Brocas
Enviado por Mikki • 11 de Septiembre de 2018 • 1.689 Palabras (7 Páginas) • 299 Visitas
...
Prepare a graph that shows the break-even costs of $50/ft as a function of penetration rate and bit life. Label the región of the graph tha shows combinations of penetration rate and bit life which are not aceptable. If the initial penetration rate of the new bit during the first hour is 4 ft/hr, what would you recomend?
[pic 14]
[pic 15]
[pic 16]
[pic 17]
[pic 18]
[pic 19]
5.10. Grade the bit shown in the photograph below.
[pic 20]
El grado de una broca depende de tres factores que son:
- Steel teeth: medida de la altura del diente perdido o desgastado.
- Bearings: medida del rodamiento que se ha desgastado
- Gauge wear: medida del desgaste en el diámetro.
Respuesta: Grado T-8, B-8, G-O
5.11. Describe the difference between self-sharpening and abrasive tooth wear. Discuss what is done by the bit manufacturers to promote self-sharpening bit wear on milled-tooth, rolling-cutter bits.
Normalmente el carburo de tungsteno en cual se localiza en la parte posterior de la capa de diamantes tiende a desgastarse mucho más rápido que el diamante poli cristalino, esto se debe a que presenta una baja resistencia a la abrasión y por tal motivo los cortadores PDC siempre conservan un borde afilado mientras se produce la acción de desgaste del mismo.
Mientras más se utiliza una barrena de diamantes estos se van desgastando de tal modo que se comienzan a tornar lizos, esto también produce una reducción considerable en su eficacia al momento de cortar la roca lo cual sucede también con los dientes en una barrena de conos y comienzan a perforar a una menor velocidad de la habitual. A diferencia de las barrenas de cono esto no sucede con las PDC ya que estas conservan una velocidad más alta de perforación a lo largo del intervalo perforado
5.12. A 9.875 in. Class 1-1-1 bit drilling from a depth of12000 to 12200 ft. In 12 hours. The average but weight and rotary speed used for the bit run was 40000 lbf, 90 rpm respectively. When a bit was pulled, it was graded T-6, B-6. The drilling fluid was a barite- weight clay/ water mud having a density of 12 lbm/gal.
- Compute the average formation abrasiveness constant for this depth interval.
Using the table 5.8 we obtain:
[pic 21]
Using the eq. 5.11:
[pic 22]
[pic 23]
Using eq. 5.13:
[pic 24]
[pic 25]
[pic 26]
- Estimate the time required to completely dull the bit teeth using a bit weight of 45000 lbf and the rotary speed of 100 rpm.
W=45000lbf
N= 100 rpm
Using eq. 5.11:
[pic 27]
[pic 28]
[pic 29]
.[pic 30]
- Compute the bearing constant for this depth interval.
Using table 5.9 we obtain:
[pic 31]
[pic 32]
[pic 33]
[pic 34]
[pic 35]
- Estimate the time required to completely dull the bearing using a bit weight of 45000lbf and the rotary speed of 100 rpm
[pic 36]
[pic 37]
[pic 38]
[pic 39]
5.13. Compute the bearing constant, TB , for the bit of Example 5.3 if the drilling fluid were a weighted clay-water mud (barite mud). Use values of B1 and B2 recommended in table 5.9.
DATOS:
De la tabla 5.9
B1 = 1.0
B2= 1.5
Del Example 5.3:
W = 45000 lbf
N = 90 RPM
db = 8.5 in
tb = 10.5 hours
bf = 6/8 = 0.75
SOLUCIÓN:
[pic 40]
[pic 41]
[pic 42]
[pic 43]
[pic 44]
[pic 45]
5.14. Field data observed on 7,875 in., Series 6, roller-bearing bits at a rotary speed of 60rpm shows an average bearing life of 32 hours for a bit weight of 5 700 lbf/in. and 45 hours at 3800 lbf/in. Compute the apparent bearing weight exponent, B2, and bearing constant, , for this bit type.[pic 46]
DATOS:
[pic 47]
[pic 48]
[pic 49]
[pic 50]
[pic 51]
SOLUCIÓN:
[pic 52]
[pic 53]
[pic 54]
[pic 55]
[pic 56]
[pic 57]
[pic 58]
[pic 59]
...