Essays.club - Ensayos gratis, notas de cursos, notas de libros, tareas, monografías y trabajos de investigación
Buscar

Propiedades de los materiales Unidad 2

Enviado por   •  7 de Diciembre de 2018  •  2.627 Palabras (11 Páginas)  •  529 Visitas

Página 1 de 11

...

moléculas y no tanto para átomos. [pic 12]

Diagrama de un enlace intermolecular, puente de hidrógeno de las moléculas de agua.

En muchos casos, se habla de un material puro cuando este no tienen impurezas de otra naturaleza en su estructura. Sin embargo, en realidad no existen materiales totalmente puros, por eso que se les debe asignar un porcentaje de pureza, que, por ejemplo, en metales preciosos, les da su valor comercial.

Estructura de los materiales compuestos

Matriz.

Es el volumen donde se encuentra alojado el refuerzo, se puede distinguir a simple vista por ser continuo. Los refuerzos deben estar fuertemente unidos a la matriz, de forma que su resistencia y rigidez sea transmitida al material compuesto. El comportamiento a la fractura también depende de la resistencia de la interface. Una interface débil da como resultado un material con baja rigidez y resistencia, pero alta resistencia a la fractura y viceversa.

Las matrices se pueden clasificar en: Matrices orgánicas y Matrices inorgánicas.

Los materiales compuestos de matriz metálica (CMM) han sido destinados especialmente a aplicaciones estructurales en la industria automotriz, aeroespacial, militar, eléctrica y electrónica, las cuales usualmente exigen alta rigidez, resistencia y módulo específico. Para el caso de las aplicaciones en el sector eléctrico y electrónico, se requiere en el diseño de los materiales, propiedades termo mecánicas y termofísicas con una máxima transferencia de calor.

Los materiales metálicos de uso más común en CMM son las aleaciones ligeras de Al, Ti y Mg; siendo el Al el de mayor consumo debido a su bajo costo, baja densidad, buenas propiedades mecánicas, alta resistencia a la degradación ambiental y fácil manipulación. También se destaca el uso de aleaciones base Cu, al igual que se está investigando el uso de semiconductores, superaleaciones y compuestos intermetálicos.

Refuerzos.

Los tipos de refuerzo se pueden clasificar en tres categorías: fibras, whiskers y partículas. Desde el punto de vista de propiedades mecánicas, se puede obtener una gran mejora mediante el uso de fibras continuas, reforzando en la dirección del esfuerzo aplicado; mientras que con whiskers y partículas se experimenta una disminución de resistencia pero se obtiene una gran isotropía en el material.

Fibras Continuas: En el caso de las fibras metálicas, los problemas de ataque químico por parte de la matriz, los posibles cambios estructurales con la temperaturaza, la posible disolución de la fibra en la matriz y la relativamente fácil oxidación de las fibras de metales refractarios (W, Mo, Nb), hacen que éste tipo de materiales sean poco empleados. Esto ha dado pie al enorme desarrollo de las fibras cerámicas, siendo las más empleadas como refuerzo las de B, Al2O3 y SiC, y que entre sus numerosas ventajas se cuentan: no se disuelven en la matriz, mantienen su resistencia a altas temperaturas, tienen alto módulo de elasticidad, no se oxidan y tienen baja densidad.

Partículas: El uso de partículas como material reforzante, tiene una mayor acogida en los CMM, ya que asocian menores costos y permiten obtener una mayor isotropía de propiedades en el producto. Sin embargo, para tener éxito en el CMM desarrollado, se debe tener un estricto control del tamaño y la pureza de las partículas utilizadas. Los refuerzos típicos de mayor uso en forma de partícula son los carburos (TiC, B4C), los óxidos (SiO2, TiO2, ZrO2, MgO), la mica y el nitruro de silicio (Si3N4). En los últimos años se han empezado a utilizar partículas de refuerzo de compuestos intermetálicos, principalmente de los sistemas Ni-Al y Fe-Al.

interfase matriz-refuerzo

La zona de interfase es una región de composición química variable, donde tiene lugar la unión entre la matriz y el refuerzo, que asegura la transferencia de las cargas aplicadas entre ambos y condiciona las propiedades mecánicas finales de los materiales compuestos.

Existen algunas cualidades necesarias para garantizar una unión interfacial adecuada entre la matriz y el reforzante: una buena mojabilidad del reforzante por parte de la matriz metálica, que asegure un contacto inicial para luego, en el mejor de los casos, generar la unión en la interfase una estabilidad termodinámica apropiada (ya que al interactuar estos materiales, la excesiva reactividad es uno de los mayores inconvenientes encontrados), la existencia de fuerzas de unión suficientes que garanticen la transmisión de esfuerzos de la matriz al refuerzo y que sean además estables en el tiempo bajo altas temperaturas. En el sector eléctrico y electrónico, se debe tener en cuenta que los CET de la matriz y de los refuerzos deben ser similares para limitar los efectos de los esfuerzos internos a través de la interfase, sobre todo al utilizar el compuesto a altas temperaturas.

Cerámicas cristalinas.

Estructura no cristalina. Los átomos se acomodan en conjuntos irregulares y aleatorios. Los sólidos no cristalinos con una composición comparable a la de las cerámicas cristalinas se denominan vidrios. La mayor parte de los vidrios que se comercializan son silicatos.

Estructura

Puede ser cristalina, no cristalina, o una mezcla de ambas. Se presentan en las más variadas formas; de estructuras muy simples a las más complejas mezclas de fases. Su abundancia en la naturaleza y las diferencias que presentan en sus propiedades respecto a las de los metales los convierte en materiales sumamente importantes.

Cristales cerámicos

Hay dos características de los iones que componen los materiales cerámicos cristalinos que determinan la estructura cristalina:

El valor de la carga eléctrica de los iones componentes.

Los tamaños relativos de los cationes y aniones.

Con respecto a la primera, el cristal debe ser eléctricamente neutro; es decir debe haber igual número de cargas positivas ( de los cationes) que de cargas negativas (de los aniones). La fórmula química de un compuesto indica la proporción que debe haber entre cationes y aniones para que se mantenga la neutralidad. El segundo aspecto comprende el tamaño de los radios iónicos de los cationes y aniones RC y RA . Puesto que los elementos

...

Descargar como  txt (17.5 Kb)   pdf (65.1 Kb)   docx (21 Kb)  
Leer 10 páginas más »
Disponible sólo en Essays.club