Revisión de farmacológicos
Enviado por paula chaparro rodriguez • 14 de Septiembre de 2021 • Tarea • 2.110 Palabras (9 Páginas) • 317 Visitas
Revisión de farmacológicos
Conceptos Relación dosis-respuesta
Los primeros conocimientos científicos reconocieron dos tipos básicos de sustancias: las benéficas (como alimentos y medicinas) y las nocivas (las que causan enfermedad o muerte). Estos últimos fueron designados como venenos. La ciencia moderna reconoce que una división tan estricta no está justificada. Ya en el siglo XVI, Paracelso reconoció que “la dosis correcta diferencia un veneno y un remedio ''. Muchas sustancias químicas o mezclas ejercen todo un espectro de actividades, que van desde las benéficas hasta las neutrales y las letales. Su efecto depende no sólo de la cantidad de sustancia a la que está expuesto un organismo, sino también de la especie y el tamaño del organismo, su estado nutricional, el método de exposición y varios factores relacionados. ejemplo. Tomado en pequeñas cantidades, el alcohol puede ser inofensivo y, a veces, incluso recomendado por un médico. Sin embargo, una sobredosis provoca intoxicación y, en casos extremos, la muerte. De manera similar, la vitamina A es necesaria para el funcionamiento normal de la mayoría de los organismos superiores, sin embargo, una sobredosis es altamente tóxica. Si el efecto biológico de una sustancia química está relacionado con su dosis, debe haber un rango medible entre las concentraciones que no producen efecto y los que producen el máximo efecto. La observación de un efecto, ya sea beneficioso o perjudicial, se complica por el hecho de que los sistemas aparentemente homogéneos son, de hecho, heterogéneos. Incluso una especie consanguínea mostrará diferencias marcadas entre los individuos en respuesta a los productos químicos. Un efecto producido en un individuo no necesariamente se repetirá en otro y uno. Por lo tanto, cualquier estimación significativa de la potencia tóxica de un compuesto implicará métodos estadísticos de evaluación.
Determinación de toxicidad
Para determinar la toxicidad de un compuesto para un sistema biológico, se debe identificar un efecto final observable y bien definido. La turbidez o la producción de ácido, que refleja el crecimiento o la inhibición del crecimiento de un cultivo, puede utilizarse como punto final en los sistemas bacterianos. En algunos casos, como en el estudio de la mutagénesis, se puede utilizar el recuento de colonias. De manera similar, las medidas de células viables, proteína celular o recuento de colonias son puntos finales útiles en cultivos celulares. El punto final más fácilmente observable con los experimentos in vivo es la muerte de un animal, y esto se usa con frecuencia como un primer paso en la evaluación de la toxicidad de una sustancia química. La inhibición del crecimiento celular o la muerte de animales no son las únicas preocupaciones de toxicología. Se pueden elegir muchos otros puntos finales, dependiendo del objetivo del experimento. Ejemplos de tales opciones son la inhibición de una enzima específica, el tiempo de sueño, la aparición de tumores y el tiempo hasta el inicio de un efecto. Debido a que la toxicidad de una sustancia química está relacionada con el tamaño del organismo expuesto, la dosis debe definirse en términos de concentración en lugar de cantidad absoluta. (En la literatura médica y en la farmacocinética, la cantidad total administrada se denomina con frecuencia dosis total). Unidades de peso (miligramo, microgramo, nanogramo, etc.) por mililitro de medio de mantenimiento o unidades molares (milimolar, micromolar, nanomolar) 1 son utilizado con en vitrosystems. En experimentos con animales, las dosis se expresan en peso o unidades moleculares por kilogramo de peso corporal o por metro cuadrado de superficie corporal. Como ejemplo, se diseña un experimento simple para determinar la letalidad de una sustancia química en ratones. El compuesto que se va a ensayar se administra a varios grupos de animales, normalmente de 5 a 10 animales por grupo, y cada grupo sucesivo recibe una dosis progresivamente mayor. Se registra el número de animales muertos en cada grupo. Luego, el porcentaje de animales muertos en cada dosis menos el porcentaje que murió con la dosis inmediatamente inferior se representa gráficamente frente al logaritmo de la dosis. Este gráfico genera la curva de distribución gaussiana, también conocida como curva de dosis-respuesta cuántica, que se presenta en la Figura 2.1. El punto en la parte superior de la curva representa la media de la distribución, o la dosis que mata al 50% de los animales; se designa como LD50.2 La media menos una desviación estándar (DE) corresponde a LD16; LD50 menos dos DE corresponder a LD2.3. La media más una DE corresponder a LD84; más dos SD corresponde a LD. Este tipo de parcela no es muy práctica, por lo que el porcentaje acumulado de animales muertos se suele graficar contra el logaritmo de la dosis. El uso de una parcela semilogarítmica se originó con CI Bliss, quien estudió el efecto de los insecticidas en los insectos. Se dio cuenta de que siempre había algunos insectos muertos a la dosis mínima y siempre algunos supervivientes a la dosis máxima. También observó que duplicar la dosis siempre aumentaba el efecto en un intervalo fijo. Un modelo matemático que refleja estas condiciones sugirió el uso de una escala de dosis logarítmica, en lugar de lineal. Dado que la parte central de la curva es casi lineal, el efecto en este segmento es proporcional al logaritmo de la dosis. Los dos extremos de la curva se acercan asintéticamente, pero nunca alcanzan, el efecto 0 y 100%. Por tanto, la dosis umbral (es decir, la dosis por debajo de la cual no hay efecto) no se puede determinar experimentalmente. El análisis de la curva en la Figura 2.2 revela que los límites de confianza de los puntos de datos son mayores en el segmento central y bajo en los segmentos planos de la curva.3 En estos segmentos planos, una pequeña desviación del valor observado del valor esperado causa una gran Error en la estimación de la dosis. Los toxicólogos deben darse cuenta de que solo los puntos de datos que fallan a lo largo de la parte recta de la curva son significativos.
Transformación probit
Bliss (1) introdujo la transformación probit (para probabilidad), una forma diferente de trazar la curva dosis-respuesta. En este gráfico, el efecto se representa en unidades probit, LD50 es 5; cada + SD agrega un punto a la escala, y cada –DE resta una Revisión de conceptos farmacológicos21Figura 2.1. Curva cuántica de dosis-respuesta. La frecuencia representa el porcentaje de animales que murieron con cada dosis.3 Los límites de confianza son los dos puntos, uno a cada lado de la media, entre los cuales caerían el 95% de los puntos de datos si el experimento
...