Essays.club - Ensayos gratis, notas de cursos, notas de libros, tareas, monografías y trabajos de investigación
Buscar

Concepto; módulo; orden de los enteros. Adición, sustracción, producto, cociente, potencia y radicación.

Enviado por   •  17 de Abril de 2018  •  1.522 Palabras (7 Páginas)  •  420 Visitas

Página 1 de 7

...

El ciclo superior de la educación secundaria, representa para los estudiantes la oportunidad de

profundizar contenidos matemáticos anteriores y de construir nuevos saberes, accediendo a niveles

crecientes de formalización y generalización.

Es importante que los contenidos del Ciclo Básico Común sean recuperados, ampliados y profundizados.

También, se trata de continuar con la utilización de las siguientes estrategias: la resolución de situaciones

problemáticas, la modelización que establecen relaciones entre el campo de la Matemática con otros

campos del conocimiento y de la cultura con situaciones de la vida real y el uso de la tecnología.

El aprendizaje deberá centrarse así en torno a la actividad reflexiva del estudiante sobre sus

producciones y conocimientos y sobre los significados, los modelos y las relaciones que logra establecer.

Para la organización de los contenidos se retoman los ejes propuestos para el Ciclo Básico Común, y que

había sido tomada de los Núcleos de Aprendizajes Prioritarios (NAP).

La organización en ejes significa que los contenidos deben ser trabajados en forma continua,

relacionando los saberes de un eje con los de los otros, de manera de facilitar a los estudiantes la posibilidad

de analizar y comprender los conceptos involucrados en cada uno de ellos, valorando la potencia de los

conocimientos.

Ministerio de Cultura, Educación,

Ciencia y Tecnología

2012-Año Provincial del Agua de las Misiones,

recurso estratégico para el futuro de los Misioneros

38

Por otra parte, así como la enseñanza de un contenido puede abordarse desde distintos ejes, vectores

por ejemplo, éste puede ser trabajado tanto desde la Geometría como desde el Álgebra, el eje Números y

Operaciones está presente en la resolución de cualquier situación problemática, por los que los contenidos

que involucra pueden ser introducidos en el momento oportuno para resolver un problema geométrico,

estadístico o funcional.

En cada eje se consideran los saberes que están en relación con:

Geometría, medida y lugares geométricos

Además de profundizar el análisis del concepto de lugar geométrico llevándolo al plano de otras figuras

geométricas, ofrece la posibilidad para trabajar y relacionar contenidos de los otros ejes en la propuesta de

problemas diversos.

Número y operaciones

Avanza en los contenidos sobre sucesiones y series de números que responden a patrones de formación

y permiten vincularlos con el Álgebra y las generalizaciones. Comprende los saberes relacionados con los

campos numéricos N, Z, Q, R y C, sus propiedades y operaciones.

Se profundiza el estudio de los Números Reales, y se amplía el campo numérico a los Números

Complejos; se amplía también, el estudio de las funciones y su comportamiento en relación a sus gráficos y a

su expresión analítica.

Álgebra y estudio de funciones

En este eje se pone la atención en los saberes relacionados con la modelización de fenómenos

provenientes de otras ciencias o de la vida real, y trabajados en el marco de la resolución de problemas. Se

profundiza en el estudio de las funciones iniciado en el Ciclo Básico Común, que implica el reconocimiento y

uso de las funciones polinómicas y racionales, y el trabajo con la factorización de los polinomios. Además de

aquellas que trascienden el campo del álgebra tales como las trigonométricas, logarítmicas y exponenciales.

Se profundiza en el estudio de las ecuaciones como lenguaje algebraico, ligado a las funciones polinómicas,

curvas planas, rectas y cónicas, y como herramientas útiles en la modelización de situaciones problemáticas

para diversos ámbitos.

Probabilidades y Estadística

Este eje se centra en el estudio y profundización de los métodos estadísticos que proporcionan

información acerca de fenómenos o hechos procedentes de otras ciencias y que resultan necesarios para

tomar decisiones. Se avanza en el análisis e interpretación de datos, tomados del trabajo de campo, que

permitan hacer inferencias en el contexto de los fenómenos estudiados.

3.2.1.2.2. Propósitos

El recorrido de los estudiantes a través del ciclo orientado deberá prepararlos para:

Establecer relaciones, argumentar los caminos de solución, validar los resultados obtenidos, desde la

perspectiva de resolución de situaciones problemáticas

Construir conocimientos matemáticos significativos y avanzar en procesos que les permitan argumentar

y justificar

...

Descargar como  txt (12.5 Kb)   pdf (57.2 Kb)   docx (19.8 Kb)  
Leer 6 páginas más »
Disponible sólo en Essays.club