DIFUSIÓN CON UNA REACCIÓN QUÍMICA HOMOGÉNEA
Enviado por Rebecca • 1 de Mayo de 2018 • 1.389 Palabras (6 Páginas) • 343 Visitas
...
SOLUCION:
No es posible hacer un análisis exacto de esta situación debido a la complejidad del proceso de absorción del gas. Sin embargo, es posible adquirir un conocimiento semicuantitativo útil por medio del análisis de un modelo relativamente sencillo. El modelo que usamos implica las siguientes suposiciones:
- Cada burbuja de gas está rodeada por una película de líquido estancada de espesor , que es pequeño en comparación con el diámetro de la burbuja.[pic 27]
[pic 28]
Ilustración 2 Figura 18.4-2 Aparato para la absorción de gas
- Después de que se forma la burbuja, en la película de líquido se establece rápidamente un perfil de concentración casi estacionario.
- El gas A es muy poco soluble en el líquido, de modo que es posible despreciar el término de convección en la ecuación 18.0-1.
- EI Líquido fuera de la película estancada está a una concentración CAB que cambia tan lentamente respecto al tiempo que puede considerarse constante.
La ecuación diferencial que describe la difusión con reacción química es la misma que la ecuación 18.4-4, pero ahora las condiciones límite son
C.L.1: en z=0 (18.4-13)[pic 29]
C.L.2: en z= CA = CA (18.4-14)[pic 30][pic 31]
La concentración CA0 es la concentración interfacial de A en la fase liquida, que se supone está en equilibrio con la fase gaseosa en la interfase, y CA es la concentración de A en el cuerpo principal del líquido. La solución de la ecuación 18.4-4 con estas condiciones límite es[pic 32]
(18.4-15)[pic 33]
Donde . Este resultado se grafica en la figura 18.4 3.[pic 34]
Luego se usa la suposición d anterior y la cantidad de A que entra al cuerpo principal del líquido en z = sobre la superficie total de la burbuja S en el tanque se iguala con la cantidad de A que se consume por reacción química en la masa del líquido:[pic 35]
(18.4-16)[pic 36]
Al sustituir CA de la ecuación 18.4-15 en la ecuación 18.4-16, se obtiene una expresión para B:
(18.4-17)[pic 37]
Una vez que este resultado se sustituye en la ecuación 18.4-15, se obtiene una expresión para CA /CA0 términos de ϕ y V/S.[pic 38]
A partir de esta expresión para el perfil de concentración, luego es posible obtener la velocidad total de absorción con reacción química a partir de NAz = - DAB (evaluada en z = 0; así,[pic 39]
(18.4-18)[pic 40]
El resultado se grafica en la figura 18.4-4.
[pic 41]
Ilustración 3 Figura 18.4-3 Predicción del perfil de concentración en la película liquida próxima a una burbuja.
[pic 42]
Ilustración 4 Absorción de gas acompañada de una reacción química irreversible de primer orden
Aquí se observa que la velocidad de absorción adimensional por unidad de área en la interfase, N, aumenta con ϕ para todos los valores finitos de V/S. A valores muy bajos de ϕ -- e s decir, para reacciones muy lentas--, N tiende a cero. Para esta situación límite el líquido está casi saturado con el gas disuelto, y la "fuerza impulsara" para la absorción es muy pequeña. Para valores altos de ϕ la densidad de flujo de masa adimensional en la superficie aumenta rápidamente con ϕ y se vuelve casi independiente de V/S. En las últimas circunstancias, la reacción es tan rápida que casi todo el gas que se está disolviendo se consume en el interior de la película. Entonces B es casi cero y la masa del líquido no desempeña ningún papel importante. En el límite a medida que ϕ se hace muy elevado, N tiende a ϕ.[pic 43][pic 44]
Para valores intermedios de ϕ se observa un comportamiento algo más interesante. Puede notarse que, para V/S moderadamente grande, hay un intervalo considerable de ϕ para el cual N es casi igual a la unidad. En esta región la reacción química es suficientemente rápida para mantener la masa de la solución casi libre de soluto, pero suficientemente lenta para afectar poco el transporte del soluto en la película. Una situación así se presenta cuando la razón V/S de la masa al volumen de la película es suficiente para equilibrar la mayor velocidad de reacción volumétrica en la película. Entonces, la velocidad de absorción es igual a la velocidad de absorción física (es decir, la velocidad para la cual ) para un tanque libre de soluto. Este comportamiento suele observarse a menudo en la práctica, y la operación en estas condiciones ha demostrado ser un medio útil para caracterizar el comportamiento de la
...