Essays.club - Ensayos gratis, notas de cursos, notas de libros, tareas, monografías y trabajos de investigación
Buscar

ACTIVIDAES PARA M.R.U.V: NIVEL 1

Enviado por   •  9 de Noviembre de 2017  •  2.737 Palabras (11 Páginas)  •  595 Visitas

Página 1 de 11

...

[-5,55 m/s²];[6 s];[16,66 m/s]

17. Un tren que marcha a la velocidad de 80 km/h, frena durante 60 m, con lo que su velocidad pasa a ser de 50 Km/h. ¿Cuál es el valor de la aceleración?.

[-2,5 m/s²]

18. De un globo que está a 150 m sobre el nivel del suelo se desprende un objeto; en ese momento el globo está descendiendo con una velocidad de 4 m/s. Calcular el tiempo que tarda en tocar el suelo, así como su velocidad.

[5,09 s y 197,6 km/h]

19. Un cuerpo es lanzado hacia abajo desde un edificio con una cierta velocidad inicial. Se sabe que al llegar al suelo, tiene una velocidad de 200 km/h y que se lanzó desde 120 m. Calcular la velocidad con que se lanzó y el tiempo que tardó en caer?.

[26,19 m/s y 2,93 s]

20. Desde un acantilado se deja caer un cuerpo, en vertical, hasta que llega a la superficie de un lago que hay en su fondo. La altura respecto de la mencionada superficie es de 150 m. Calcular el tiempo trascurrido desde que se deja caer una piedra hasta que se oye el golpe de ésta con el agua. La velocidad de sonido vale 340 m/s. ¿Con qué velocidad chocará la piedra contra el agua?.

[5,9 s];[54,7 m/s]

21. Si la aceleración de la gravedad en la Luna es 1/6 de la gravedad terrestre, ¿Cuánto tiempo más tardaría en caer un cuerpo en ella, si se dejase caer desde 50 m?.

[4,58 s]

22. Un coche inicia un viaje de 495 Km. a las ocho y media de la mañana con una velocidad media de 90 Km/h ¿A qué hora llegará a su destino?

Solución: 14 pm.

23. Dos trenes se cruzan perpendicularmente y hacen un recorrido durante cuatro horas, siendo la distancia que los separa al cabo de ese tiempo, de 100 km. Si la velocidad de uno de los trenes es de 20 km/h, calcular la velocidad del segundo tren.

Solución: v = 15 km/h

24. Dos vehículos cuyas velocidades son 10 Km/h y 12 Km/h respectivamente se cruzan perpendicularmente en su camino. Al cabo de seis horas de recorrido, ¿cuál es la distancia que los separa?

Solución: 93,72 km.

25. Dos automóviles que marchan en el mismo sentido, se encuentran a una distancia de 126 Km. Si el más lento va a 42 Km/h, calcular la velocidad del más rápido, sabiendo que le alcanza en seis horas.

Solución: v = 63 km/h

26. Un deportista sale de su casa en bici a las seis de la mañana. Al llegar a un cierto lugar, se le estropea la bici y ha de volver andando. Calcular a qué distancia ocurrió el percance sabiendo que las velocidades de desplazamiento han sido de 30 Km/h en bici y 6 Km/h andando y que llegó a su casa a la una del mediodía.

Solución: 30 km

27. Un deportista recorre una distancia de 1.000 km, parte en moto y parte en bici. Sabiendo que las velocidades han sido de 120 Km/h en la moto y 20 Km/h en bici, y que el tiempo empleado ha sido de 15 horas calcular los recorridos hechos en moto y en bici.

Solución: la motocicleta 840 km y la bici 160 km.

28. Un observador se halla a 510 m. de una pared. Desde igual distancia del observador y de la pared, se hace un disparo ¿al cabo de cuántos segundos percibirá el observador : a) el sonido directo. b) el eco? Velocidad del sonido 340 m/s.

Solución: el sonido directo a 0,75 s, y el del eco a 2,25 s.

29. Un ladrón roba una bicicleta y huye con ella a 20 km/h. Un ciclista que lo ve, sale detrás del mismo tres minutos más tarde a 22 Km/h. ¿Al cabo de cuánto tiempo lo alcanzará?

Solución: 30 minutos.

30. Calcular la longitud de un tren cuya velocidad es de 72 Km/h y que ha pasado por un puente de 720 m de largo, si desde que penetró la máquina hasta que salió el último vagón han pasado ¾ de minuto.

Solución: 180 metros.

31. Dos coches salen a su encuentro, uno de Bilbao y otro de Madrid. Sabiendo que la distancia entre ambas capitales es de 443 Km. y que sus velocidades respectivas son 78 Km/h y 62 Km/h y que el coche de Bilbao salió hora y media más tarde, calcular : a) Tiempo que tardan en encontrarse b) ¿A qué distancia de Bilbao lo hacen?

Solución: tardan en encontrarse 2,5 horas; a 195 km de Bilbao.

32. Una locomotora necesita 10 s. para alcanzar su velocidad normal que es 60 Km/h. Suponiendo que su movimiento es uniformemente acelerado ¿Qué aceleración se le ha comunicado y qué espacio ha recorrido antes de alcanzar la velocidad regular?

A = 1,66 m/s2 e=83 m

33. Un cuerpo posee una velocidad inicial de 12 m/s y una aceleración de 2 m/s2 ¿Cuánto tiempo tardará en adquirir una velocidad de 144 Km/h?

T=14 seg.

34. Un móvil lleva una velocidad de 8 cm/s y recorre una trayectoria rectilínea con movimiento acelerado cuya aceleración es igual a 2 cm/s2. Calcular el tiempo que ha tardado en recorrer 2,10 m.

T=11 seg

35. Un motorista va a 72 Km/h y apretando el acelerador consigue al cabo de 1/3 de minuto, la velocidad de 90 Km/h. Calcular a) su aceleración media. b) Espacio recorrido en ese tiempo.

A=0,25 m/s2 e=450m

36. En ocho segundos, un automóvil que marcha con movimiento acelerado ha conseguido una velocidad de 72 m/s. ¿Qué espacio deberá recorrer para alcanzar una velocidad de 90 m/s?

e=450 m

37. Se deja correr un cuerpo por un plano inclinado de 18 m. de longitud. La aceleración del móvil es de 4 m/s2; calcular a) Tiempo que tarda el móvil en recorrer la rampa. b) velocidad que lleva al finalizar el recorrido inclinado.

t=3 seg v= 12 m/s

38. Dos móviles se dirigen a su encuentro con movimiento uniformemente acelerado desde dos puntos distantes entre sí 180 Km. Si se encuentran a los 9 s de salir y los espacios recorridos por los móviles están en relación de 4 a 5, calcular sus aceleraciones respectivas.

a=1,975m/s2 a´= 2,469

...

Descargar como  txt (15.6 Kb)   pdf (113.1 Kb)   docx (17.5 Kb)  
Leer 10 páginas más »
Disponible sólo en Essays.club