OSE DANIEL GOMEZ UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA
Enviado por Stella • 3 de Enero de 2018 • 789 Palabras (4 Páginas) • 506 Visitas
...
Calcula magnitud
│u│=√82+ 42 =√80
│v│ =√62 + 42 =√52
Ū ¯v = (8 ȋ- 4 ĵ). (6 ȋ - 4 ĵ)
= 8x-6+-4x-4 = 48+16 = 32
Cos Ɵ = 32 Ɵ = cos (0,496) = 60,25[pic 24]
√80 √52
2.2. [pic 25] y [pic 26]
│w│=√12+32 =√10
│z│=√12+52 =√26
Ỹ. Ż = (1 ȋ + 3 ĵ). (1 ȋ + 5 ĵ)
=-1x+-1 +3x-5
= 1 -15 = -14
Cos Ɵ= -14 Ɵ= cos (-0,868)=150,25[pic 27]
√10 √26
2.3. [pic 28] y [pic 29]
│S│=√12+32+ 22 =√14
│t│=√12+52 + 12 =√27
= -1 + 3j + 2 -1-5j = 16
Cos Ɵ= -16 Ɵ=cos (0,822)=34,61[pic 30]
√14 √27
3. Dada la siguiente matriz, encuentre empleando para ello el método de Gauss – Jordán. (Describa el proceso paso por paso). NO SE ACEPTAN PROCEDIMIENTOS REALIZADOS POR PROGRAMAS DE CALCULO (Si se presenta el caso, trabaje únicamente con números de la forma y NO con sus representaciones decimales).
[pic 31]
Solución:
[pic 32][pic 33][pic 34][pic 35][pic 36][pic 37]
-3 -1 7 -1 7 -3
C= -1 4 -3 -5. 0 -3 + 10. 0 4 = 372
4. Encuentre el determinante de la siguiente matriz describiendo paso a paso la operación que lo va modificando (sugerencia: emplee las propiedades e intente transformarlo en una matriz triangular). NO SE ACEPTAN PROCEDIMIENTOS REALIZADOS POR PROGRAMAS DE CALCULO
(Si se presenta el caso, trabaje únicamente con números de la forma [pic 38] y NO con sus representaciones decimales).
[pic 39]
A=0. 0 -1 -2 1 0 -1 – 2 1 0 0 -2 1 0 0 -1 1 [pic 40][pic 41][pic 42][pic 43][pic 44][pic 45][pic 46][pic 47]
2 1 5 7 -0. 0 1 5 7 + 0. 0 2 5 7 - 0. 0 2 1 7 + (-1).
1 -2 6 -2 4 -2 6 -2 4 1 6 -2 4 1 -2 -2
0 2 3 4 1 2 3 4 1 0 3 4 1 0 2 4
[pic 48][pic 49]
0 0 -1 -2
0 2 1 5 = 25
4 1 -2 6
1 0 2 3
5. Encuentre la inversa de la siguiente matriz, empleando para ello determinantes (Recuerde:[pic 50])
Nota: Describa el proceso paso por paso (Si se presenta el caso, trabaje únicamente con números de la forma [pic 51] y NO con sus representaciones decimales).
[pic 52]
0 5 3 5 3 0[pic 53][pic 54][pic 55][pic 56][pic 57][pic 58]
C= (-5). 1 -5 -(-2). -8 -5 + (-1). -8 1 = 72
Referencias bibliográficas
- Distancia – Unad Escuela de ciencias básicas tecnología e ingeniería.
- PROTOCOLO_-_MODULO_ACADEMICO_2013II .Universidad Nacional Abierta y A Distancia – Unad Escuela de ciencias básicas tecnología e ingeniería Contenido Didáctico Del Curso: 100408_66 ALGEBRA LINEAL
- GROSSMAN, Stanley. Algebra Lineal. McGraw Hill. México 1.996
...