Origen del Sistema Solar.
Enviado por Helena • 8 de Marzo de 2018 • 6.680 Palabras (27 Páginas) • 881 Visitas
...
[pic 5]
A causa de este punto de vista, de que el Sistema Solar comenzó como una nube o nebulosa, y dado que Laplace apuntó a la nebulosa de Andrómeda (que entonces no se sabía que fuese una vasta galaxia de estrellas, sino que se creía que era una nube de polvo y gas en rotación), esta sugerencia ha llegado a conocerse como hipótesis nebular.
La hipótesis nebular de Laplace parecía ajustarse muy bien a las características principales del Sistema Solar, e incluso a algunos de sus detalles. Por ejemplo, los anillos de Saturno podían ser los de un satélite que no se hubiera condensado ya que, al unirse todos, podría haberse formado un satélite de respetable tamaño. De manera similar, los asteroides que giraban, en cinturón alrededor del Sol, entre Marte y Júpiter, podrían ser condensaciones de partes de un anillo que no se hubieran unido para formar un planeta. Y cuando Helmholtz y Kelvin elaboraron unas teorías que atribuían la energía del Sol a su lenta contracción, las hipótesis parecieron acomodarse de nuevo perfectamente a la descripción de Laplace.
La hipótesis nebular mantuvo su validez durante la mayor parte del siglo XIX. Pero antes de que éste finalizara empezó a mostrar puntos débiles. En 1859, James Clerk Maxwell, al analizar de forma matemática los anillos de Saturno, llegó a la conclusión de que un anillo de materia gaseosa lanzado por cualquier cuerpo podría condensarse sólo en una acumulación de pequeñas partículas, que formarían tales anillos, pero que nunca podría formar un cuerpo sólido, porque las fuerzas gravitatorias fragmentarían el anillo antes de que se materializara su condensación.
[pic 6]
También surgió el problema del momento angular. Se trataba de que los planetas, que constituían sólo algo más del 0,1% de la masa del Sistema Solar, ¡contenían, sin embargo, el 98% de su momento angular! En otras palabras: el Sol retenía únicamente una pequeña fracción del momento angular de la nube original.
¿Cómo fue transferida la casi totalidad del momento angular a los pequeños anillos formados a partir de la nebulosa? El problema se complica al comprobar que, en el caso de Júpiter y Saturno, cuyos sistemas de satélites les dan el aspecto de sistemas solares en miniatura y que han sido, presumiblemente, formados de la misma manera, el cuerpo planetario central retiene la mayor parte del momento angular.
Origen del Sistema Solar (III)
A partir de 1900 perdió tanta fuerza la hipótesis nebular para explicar la formación del Sistema Solar, que la idea de cualquier proceso evolutivo pareció desacreditada para siempre. El escenario estaba listo para la resurrección de una teoría catastrófica.
En 1905, dos sabios americanos, Thomas Chrowder Chamberlin y Forest Ray Moulton, propusieron una nueva, que explicaba el origen de los planetas como el resultado de una cuasicolisión entre nuestro Sol y otra estrella.
[pic 7]
Este encuentro habría arrancado materia gaseosa de ambos soles, y las nubes de material abandonadas en la vecindad de nuestro Sol se habrían condensado luego en pequeños "planetesimales", y éstos, a su vez, en planetas. Ésta es la hipótesis planetesimal.
Respecto al problema del momento angular, los científicos británicos James Hopwood Jeans y Harold Jeffreys propusieron, en 1918, una hipótesis de manera, sugiriendo que la atracción gravitatoria del Sol que pasó junto al nuestro habría comunicado a las masas de gas una especie de impulso lateral (dándoles "efecto", por así decirlo), motivo por el cual les habría impartido un momento angular.
Si tal teoría catastrófica era cierta, podía suponerse que los sistemas planetarios tenían que ser muy escasos. Las estrellas se hallan tan ampliamente espaciadas en el Universo, que las colisiones estelares son 10.000 veces menos comunes que las de las supernovas, las cuales, por otra parte, no son, en realidad, muy frecuentes. Según se calcula, en la vida de la Galaxia sólo ha habido tiempo para diez encuentros del tipo que podría generar sistemas solares con arreglo a dicha teoría.
Sin embargo, fracasaron estos intentos iniciales para asignar un papel a las catástrofes, al ser sometidos a la comprobación de los análisis matemáticos. Russell demostró que en cualquiera de estas cuasicolisiones, los planetas deberían de haber quedado situados miles de veces más lejos del Sol de lo que están en realidad. Por otra parte, tuvieron poco éxito los intentos de salvar la teoría imaginando una serie de colisiones reales, más que de cuasicolisiones.
Durante la década iniciada en 1930, Lyttleton especuló acerca de la posibilidad de una colisión entre tres estrellas, y, posteriormente, Hoyle sugirió que el Sol había tenido un compañero, que se transformó en supernova y dejó a los planetas como último legado. Sin embargo, en 1939, el astrónomo americano Lyman Spitzer demostró que un material proyectado a partir del Sol, en cualquier circunstancia, tendría una temperatura tan elevada que no se condensaría en planetesimales, sino que se expandiría en forma de un gas tenue. Aquello pareció acabar con toda la idea de catástrofe.
[pic 8]
A pesar de ello, en 1965, un astrónomo británico, M. M. Woolfson, volvió a insistir en el tema, sugiriendo que el Sol podría haber arrojado su material planetario a partir de una estrella fría, muy difusa, de forma que no tendrían que haber intervenido necesariamente temperaturas extremas.
Y, así, una vez se hubo acabado con la teoría planetesimal, los astrónomos volvieron a las ideas evolutivas y reconsideraron la hipótesis nebular de Laplace.
Por entonces se había ampliado enormemente su visión del Universo. La nueva cuestión que se les planteaba era la de la formación de las galaxias, las cuales necesitaban, naturalmente, mayores nubes de gas y polvo que las supuestas por Laplace como origen del Sistema Solar. Y resultaba claro que tan enormes conjuntos de materia experimentarían turbulencias y se dividirían en remolinos, cada uno de los cuales podría condensarse en un sistema distinto.
En 1944, el astrónomo alemán Cari F. von Weizsácker llevó a cabo un detenido análisis de esta idea. Calculó que en los remolinos mayores habría la materia suficiente como para formar galaxias. Durante la turbulenta contracción de cada remolino se generarían remolinos menores, cada uno de ellos lo bastante grande como para originar un Sistema Solar, con uno o más soles.
En
...