Artículo principal: Teoría de la probabilidad
Enviado por klimbo3445 • 4 de Octubre de 2018 • 2.224 Palabras (9 Páginas) • 337 Visitas
...
entonces dos objetos seleccionados serán defectuosos, cuando ocurre el evento A1∩ A2 que es la intersección entre los eventos A1 y A2. De la información dada se tiene que:
P (A1) = 20/100 ; P (A2/A1) = 19/99
así probabilidad de que los dos objetos seleccionados sean defectuosos es
P (A1 ∩ A2) = P (A1) P (A2/A1)
(20/100)(19/99)
19/495 = 0.038
Ahora suponga que selecciona un tercer objeto, entonces la probabilidad de que los tres objetos seleccionados sean defectuosos es
P (A1 ∩ A2 ∩ A3) = P (A1) P (A2/A1) P (A3/A1∩A2)
(20/100)(19/99)(18/98)
19/2695 = 0.007
Regla de Laplace:
La Regla de Laplace establece que:
La probabilidad de ocurrencia de un suceso imposible es 0.
La probabilidad de ocurrencia de un suceso seguro es 1, es decir, P(A) = 1.
Para aplicar la regla de Laplace es necesario que los experimentos den lugar a sucesos equiprobables, es decir, que todos tengan o posean la misma probabilidad.
La probabilidad de que ocurra un suceso se calcula así:
P(A) = Nº de casos favorables / Nº de resultados posibles
Esto significa que: la probabilidad del evento A es igual al cociente del número de casos favorables (los casos dónde sucede A) sobre el total de casos posibles.
Distribución binomial:
La probabilidad de ocurrencia de una combinación específica de eventos independientes y mutuamente excluyentes se determina con la distribución binomial, que es aquella donde hay solo dos posibilidades, tales como masculino/femenino o si/no.
Hay dos resultados posibles mutuamente excluyentes en cada ensayo u observación.
La serie de ensayos u observaciones constituyen eventos independientes.
La probabilidad de éxito permanece constante de ensayo a ensayo, es decir el proceso es estacionario.
Para aplicar esta distribución al cálculo de la probabilidad de obtener un número dado de éxitos en una serie de experimentos en un proceso de Bermnoulli, se requieren tres valores: el número designado de éxitos (m), el número de ensayos y observaciones (n); y la probabilidad de éxito en cada ensayo (p).
Entonces la probabilidad de que ocurran m éxitos en un experimento de n ensayos es:
P (x = m) = (nCm)(Pm)(1−P)n−m
Siendo: nCm el número total de combinaciones posibles de m elementos en un conjunto de n elementos.
En otras palabras P(x = m) = [n!/(m!(n−m)!)](pm)(1−p)n−m
Ejemplo. La probabilidad de que un alumno apruebe la asignatura Cálculo de Probabilidades es de 0,15. Si en un semestre intensivo se inscriben 15 alumnos ¿Cuál es la probabilidad de que aprueben 10 de ellos?
P(x = 10) = 15C10(0,15)10(0,85)5 = 15!/(10!(15−10)!)(0,15)10(0,85)5 = 7,68 * 10−6 Generalmente existe un interés en la probabilidad acumulada de "m o más " éxitos o "m o menos" éxitos en n ensayos. En tal caso debemos tomar en cuenta que: P(x
P(x > m) = P(x = m+ 1) + P(x = m+ 2) + P(x = m+3) +....+ P(x = n)
P(x ≤ m) = P(x = 0) + P(x = 1) + P(x = 2) + P(x = 3) +....+ P(x = m)
P(x ≥ m) = P(x = m) + P(x = m+1) + P(x = m+2) +....+ P(x = n)
Supongamos que del ejemplo anterior se desea saber la probabilidad de que aprueben:
a.− al menos 5
b.− más de 12
a.− la probabilidad de que aprueben al menos 5 es:
P(x ≥ 5) es decir, que:
1 - P(x
1 - [0,0874 + 0,2312 + 0,2856 + 0,2184 + 0,1156] = 0,0618
Nota: Al menos, a lo menos y por lo menos son locuciones adverbiales sinónimas.
Ejemplo: La entrada al cine por lo menos tendrá un costo de 10 soles (como mínimo podría costar 10 soles o más).
b.− la probabilidad de que aprueben más de 12 es P(x > 12) es decir, que:
P(x > 12) = P(x = 13)+P(x = 14)+P(x = 15)
P(x > 12) = 1,47 *10−9 +3,722 *10−11 +4,38 *10−13 = 1,507 *10−9
La esperanza matemática en una distribución binomial puede expresarse como:
E(x) = np = 15(0,15)=2,25
Y la varianza del número esperado de éxitos se puede calcular directamente:
Var(x) = np(1−p)= 15(0,15)(1-0,15)=1,9125 Estadísticas y probabilidades, con sus diferentes diagramaciones como: diagrama de barras. diagrama de línea. y diagrama de círculos que se aplican de acuerdo al tipo de estadísticas y probabilidades matemáticas.
Aplicaciones:
Dos aplicaciones principales de la teoría de la probabilidad en el día a día son en el análisis de riesgo y en el comercio de los mercados de materias primas. Los gobiernos normalmente aplican métodos probabilísticos en regulación ambiental donde se les llama "análisis de vías de dispersión o separación por medio de ecuaciones", y a menudo miden el bienestar usando métodos que son estocásticos por naturaleza, y escogen qué proyectos emprender basándose en análisis estadísticos de su probable efecto en la población como un conjunto. No es correcto decir que la estadística está incluida en el propio modelado, ya que típicamente los análisis de riesgo son para una única vez y por lo tanto requieren más modelos de probabilidad fundamentales, por ej. "la probabilidad de otro 11-S". Una ley de números pequeños
...