Diferentes Tipos De Factorizacion
Enviado por Eric • 4 de Octubre de 2017 • 590 Palabras (3 Páginas) • 630 Visitas
...
12
Hay que buscar 2 números que sumados me den 7 y multiplicados me den 12
4 + 3 = 7
4 x 3 = 12
Entonces los acomodas como factores de la ecuación cuadrática
(x + 4)(x + 3) que seria los mismo despejando a x:
x = - 4
x = - 3
9) Trinomio de la Forma; ax² + bx + c
Factorar 6x² - x - 2
Mira:
1ro) multiplica los términos de los extremos de tu trinomio (6x²) (-2) = -12x²
2do) Basándote en el coeficiente del segundo termino (-x) = -1 y en el resultado del 1er paso, vamos a buscar 2 numero que sumados me den (-1) y multiplicados me den (-12x²)
3ro) esos números son (-4x) y (3x), sumados, me dan (-1) y multiplicados me dan (-12x²)
4to) ahora acomoda dentro de un paréntesis el 1er termino de tu trinomio con el 1er factor encontrado (-4), (6x² - 4x)
5to) acomoda el 2do factor encontrado (-3x) con el 3er termino de tu trinomio (-2); (3x-2)
6to) acomoda los 2 términos nuevos (6x² - 4x) + (3x-2), encuentra algún termino común en cada uno
2x (3x - 2) + 1(3x-2), los términos comunes ponlos en otro paréntesis y elimina un termino de los 2 que tienes (3x-2),
Este será tu Factorización (2x+1)(3x-2),
10) Suma o Diferencia de Cubos: a³ + b³
Suma de Cubos:
a³ + b³ = (a + b) (a² - 2ab + b²)
Se resuelve de la siguiente manera
El binomio de la suma de las raíces de ambos términos
El cuadrado del 1er termino, - el doble del producto de los 2 términos + el cuadrado del 2do termino
Diferencia de Cubos:
a³ - b³ = (a - b) (a² + 2ab + b²)
Se resuelve de la siguiente manera
El binomio de la resta de las raíces de ambos términos
El cuadrado del 1er termino, + el doble del producto de los 2 términos + el cuadrado
...