Essays.club - Ensayos gratis, notas de cursos, notas de libros, tareas, monografías y trabajos de investigación
Buscar

Diferentes Tipos De Factorizacion

Enviado por   •  4 de Octubre de 2017  •  590 Palabras (3 Páginas)  •  621 Visitas

Página 1 de 3

...

12

Hay que buscar 2 números que sumados me den 7 y multiplicados me den 12

4 + 3 = 7

4 x 3 = 12

Entonces los acomodas como factores de la ecuación cuadrática

(x + 4)(x + 3) que seria los mismo despejando a x:

x = - 4

x = - 3

9) Trinomio de la Forma; ax² + bx + c

Factorar 6x² - x - 2

Mira:

1ro) multiplica los términos de los extremos de tu trinomio (6x²) (-2) = -12x²

2do) Basándote en el coeficiente del segundo termino (-x) = -1 y en el resultado del 1er paso, vamos a buscar 2 numero que sumados me den (-1) y multiplicados me den (-12x²)

3ro) esos números son (-4x) y (3x), sumados, me dan (-1) y multiplicados me dan (-12x²)

4to) ahora acomoda dentro de un paréntesis el 1er termino de tu trinomio con el 1er factor encontrado (-4), (6x² - 4x)

5to) acomoda el 2do factor encontrado (-3x) con el 3er termino de tu trinomio (-2); (3x-2)

6to) acomoda los 2 términos nuevos (6x² - 4x) + (3x-2), encuentra algún termino común en cada uno

2x (3x - 2) + 1(3x-2), los términos comunes ponlos en otro paréntesis y elimina un termino de los 2 que tienes (3x-2),

Este será tu Factorización (2x+1)(3x-2),

10) Suma o Diferencia de Cubos: a³ + b³

Suma de Cubos:

a³ + b³ = (a + b) (a² - 2ab + b²)

Se resuelve de la siguiente manera

El binomio de la suma de las raíces de ambos términos

El cuadrado del 1er termino, - el doble del producto de los 2 términos + el cuadrado del 2do termino

Diferencia de Cubos:

a³ - b³ = (a - b) (a² + 2ab + b²)

Se resuelve de la siguiente manera

El binomio de la resta de las raíces de ambos términos

El cuadrado del 1er termino, + el doble del producto de los 2 términos + el cuadrado

...

Descargar como  txt (3.2 Kb)  
Leer 2 páginas más »
Disponible sólo en Essays.club