FUNDAMENTOS E INTRODUCCION AL DISEÑO DE EXPERIMENTOS
Enviado por monto2435 • 4 de Agosto de 2018 • 878 Palabras (4 Páginas) • 369 Visitas
...
Tabla 2. Rendimiento promedio por hectárea de siembra
Bloque
1
2
Aplicación
1
2
1
2
Abono 1
45,5
84
57
72
Abono 2
104
121
92
106
Abono 3
57,6
91
55.2
78.8
Abono 4
34
57.2
38,5
54
Abono 5
26.2
77
21.6
62.4
- Identifique con toda precisión: las unidades experimentales, los factores, los tratamientos, las variables y demás características que intervienen en el estudio que realizo tu equipo de trabajo.
Factores: Siembra Maíz
Unidades experimentales: Formas de aplicación del abono
Tratamientos: Los seis abonos
Variables: Resultado de la aplicación de los seis abonos
- ¿Qué tipo de diseño siguieron los profesionales a cargo del estudio?
Se presenta un diseño de tipo descriptivo ya que describe las formas de aplicación y el comportamiento de los abonos en el estudio.
- Plantee el modelo matemático, justificando su respuesta.
El modelo matemático que se va a utilizar en este ejercicio es el análisis de la varianza ya que por medio de esta nos permite dividir la variabilidad observada en componentes independientes, el nivel de margen de error y así mismo para comprobar la hipótesis
- Establezca las suposiciones necesarias para el análisis de varianza de los datos. Realicé el análisis de varianza.
Se trabajaran los siguientes abonos
Superficial
X²
Incorporado
X²
Abono 1
45,5
2070,25
84
7056
57
3249
72
5184
Abono 2
104
10816
121
14641
92
8464
106
11236
Total
298,5
24599,25
383
38117
Superficial
[pic 15]
Incorporado
[pic 16]
Media total entre las dos formas de aplicación
[pic 17]
Suma total de los cuadrados
[pic 18]
[pic 19]
Suma de los cuadrados entre las dos formas de aplicación
[pic 20]
Suma de los cuadrados dentro de las formas de aplicación
[pic 21]
Fuente de varianza
SS
df
MS
F
Nivel de signo
Suma de los cuadrados entre las dos formas
892,53
1
892,53
1,42
0,05
Suma de los cuadrados dentro de las dos formas
3768,44
6
628,07
TOTAL
4660,97
7
MS
[pic 22]
[pic 23]
- Pruebe la hipótesis que no hay diferencias entre las medias de los tratamientos con la prueba de F a un nivel de significancia de 0.05.
F
[pic 24]
No existe diferencia entre los tratamientos.
-
...