PROYECTO DE PROGRAMACIÓN AVANZADA QUE RECURRA A UN ALGORITMO GENÉTICO
Enviado por John0099 • 14 de Julio de 2018 • 1.314 Palabras (6 Páginas) • 344 Visitas
...
De esta forma se muestra la representación grafica de la problemática del agente viajero.
SIMBOLOGÍA[pic 5][pic 6]
[pic 7][pic 8][pic 9][pic 10][pic 11]
[pic 12]
Inicio/Fin Entradas Decisión Salidas Líneas de Flujo
DIAGRAMA DE FLUJO
[pic 13]
[pic 14]
[pic 15][pic 16]
[pic 17]
[pic 18][pic 19]
[pic 20]
[pic 21]
[pic 22][pic 23]
[pic 24][pic 25]
[pic 26]
[pic 27][pic 28]
[pic 29][pic 30]
[pic 31]
[pic 32]
[pic 33]
[pic 34][pic 35]
[pic 36]
[pic 37][pic 38]
[pic 39]
[pic 40][pic 41]
[pic 42]
[pic 43]
[pic 44]
[pic 45]
[pic 46][pic 47]
[pic 48]
[pic 49]
[pic 50]
[pic 51]
[pic 52]
PSEUDOCODIGO[pic 53]
for ( int i=0;ifalse;
for ( int i=0;i
int icandidate;
do {
icandidate = (int) ( 0.999999* random.NextDouble() *
(double) cityList.Length );
} while ( taken[icandidate] );
cityList[i] = icandidate;
taken[icandidate] = true;
if ( i == cityList.Length-2 ) {
icandidate = 0;
while ( taken[icandidate] ) icandidate++;
cityList[i+1] = icandidate;
}
}
calculateCost(cities);
cutLength = 1;
}
public void calculateCost(SupplyPoint [] cities) {
cost=0;
for ( int i=0;i
double dist = cities[cityList[i]].proximity(cities[cityList[i+1]]);
cost += dist;
}
}
public double getCost() {
return cost;
}
public int getCity(int i) {
return cityList[i];
}
void setCities(int [] list) {
for ( int i=0;i
cityList[i] = list[i];
}
}
El curso de la búsqueda depende de 3 factores distintos, la cantidad de ciudades el total de la población a la cuales le esta asignando a cada ciudad y el porcentaje de mutación este porcentaje está sujeto a distintos cambios dependiendo de cómo el intérprete lo tome, se toma un contador que verifica que dichos valores no excedan su limite natural.
[pic 54]
void setCity(int index, int value) {
cityList[index] = value;
}
public void setCut(int cut) {
cutLength = cut;
}
public void setMutation(double prob) {
mutationPercent = prob;
}
public int mate(Chromosome father, Chromosome offspring1, Chromosome offspring2) {
int cutpoint1 = (int)(0.999999 * random.NextDouble() * (double)(cityList.Length - cutLength));
int cutpoint2 = cutpoint1 + cutLength;
bool[] taken1 = new bool[cityList.Length];
bool[] taken2 = new bool[cityList.Length];
int[] off1 = new int[cityList.Length];
int[] off2 = new int[cityList.Length];
for ( int i=0;i
taken1[i] = false;
taken2[i] = false;
}
for ( int i=0;i
if ( i= cutpoint2 ) {
off1[i] = -1;
off2[i] = -1;
} else {
int imother = cityList[i];
int ifather = father.getCity(i);
off1[i] = ifather;[pic 55]
...