EL MOVIMIENTO PARABOLICO.
Enviado por mondoro • 21 de Marzo de 2018 • 757 Palabras (4 Páginas) • 393 Visitas
...
La fórmula genera dos respuestas: Una con el signo más (+) y otra con el signo menos (−) antes de la raíz. Solucionar una ecuación de segundo grado se limita, entonces, a identificar las letras a, b y c y sustituir sus valores en la fórmula.
La fórmula general para resolver una ecuación de segundo grado sirve para resolver cualquier ecuación de segundo grado, seacompleta o incompleta, y obtener buenos resultados tiene que ver con las técnicas de factorización.
Ejemplo:
Resolver la ecuación 2x2 + 3x − 5 = 0
Vemos claramente que a = 2, b = 3 y c = −5, así es que:
[pic 6]
Ahora, tenemos que obtener las dos soluciones, con el + y con el − :
[pic 7] y también [pic 8]
Así es que las soluciones son [pic 9].
Aquí debemos anotar algo muy importante:
En la fórmula para resolver las ecuaciones de segundo grado aparece la expresión [pic 10]. Esa raíz cuadrada sólo existirá cuando el radicando (b2 − 4ac) sea positivo o cero.
El radicando b2 – 4ac se denomina discriminante y se simboliza por Δ. El número de soluciones (llamadas también raíces)depende del signo de Δ y se puede determinar incluso antes de resolver la ecuación.
[pic 11]
Entonces, estudiando el signo del discriminante (una vez resuelto), podemos saber el número de soluciones que posee:
Si Δ es positivo, la ecuación tiene dos soluciones.
Si Δ es negativo, la ecuación no tiene solución.
Si Δ es cero, la ecuación tiene una única solución.
En el ejemplo anterior el discriminante era Δ = 49, positivo, por eso la ecuación tenía dos soluciones.
Obtendremos dos soluciones, una cuando sumamos a − b la raíz y lo dividimos por 2a, y otra solución cuando restamos a − b la raíz y lo dividimos por 2a.
...