Essays.club - Ensayos gratis, notas de cursos, notas de libros, tareas, monografías y trabajos de investigación
Buscar

Indaga acerca de los números naturales.

Enviado por   •  6 de Abril de 2018  •  2.506 Palabras (11 Páginas)  •  345 Visitas

Página 1 de 11

...

a + c ≤ b + c

A × c ≤ b × c

Una propiedad importante del conjunto de los números naturales es que es un conjunto bien ordenado

Para cualquier elemento a de A existe b en A tal que a

En los números naturales existe el algoritmo de la división. Dados dos números naturales a y b, si b ≠ 0, podemos encontrar otros dos números naturales q y r, denominados cociente y resto respectivamente, tales que:

a = (b × q) + r y r

Los números q y r están unívocamente determinados por a y b.

2. Complete la siguiente tabla con las informaciones que se piden:

Operaciones Propiedades que se cumplen

Adición:

Propiedad de cerradura o clausurativa: si a, b = S entonces a+b= S, siendo S cualquiera de estos conjuntos: N, Z, Q, R o C

Propiedad conmutativa: El arreglo de los sumandos no modifica el resultado: a+b=b+a.

Propiedad asociativa: Propiedad que establece que cuando se suma tres o más números, el resultado siempre es el mismo independientemente de su agrupamiento.4 Un ejemplo es: a+ (b+c) = (a+b)+c.

Propiedad distributiva: La suma de dos números multiplicada por un tercer número es igual a la suma del producto de cada sumando multiplicado por el tercer número. Por ejemplo, (6+3) * 4 = 6*4 + 3*4.

Propiedad cancelativa. Si a+c=b+c entonces a=b y recíprocamente.

Sustracción:

1. - Clausurativa: No dice que la resta de dos números naturales, es otro número natural.

Simbólicamente:

Si a ϵ N, b ϵ N, siendo a > b, entonces:

a - B = c, c ϵ N

2.- Modulativa: Todo número restado con cero da el mismo resultado natural

Simbólicamente:

Si a ϵ N, existe 0 ϵ N, entonces, a- 0 = a

3.- Uniforme: Si los dos miembros de una igualdad restamos un mismo número, la igualdad no se altera.

Simbólicamente:

Para todo a ϵ N, b ϵ N, c ϵ N,

Si a = b,

Entonces: a - c = b - c

4.- De la Monotonía: Si los dos miembros de una desigualdad restamos un mismo número natural, entonces la desigualdad se conserva.

Simbólicamente:

Para todo a, b, c ϵ N, se cumple:

Si a > b, entonces, a - c > b - c

Multiplicación:

Propiedad conmutativa: El orden de los factores no varía el producto.

Vamos a ver un ejemplo de la propiedad conmutativa

10x3 = 3x10

30 = 30

El resultado de multiplicar 10 x 3 será igual que al multiplicar 3 x 10. Aunque cambiemos el orden de los factores el resultado seguirá siendo 30

Propiedad asociativa: El modo de agrupar los factores no varía el resultado de la multiplicación.

Pongamos un ejemplo de la propiedad asociativa de la multiplicación.

(3x2) x5 = 3x (2x5)

6 x 5 3 x 10

30 = 30

En este caso, como mostramos, nos dará el mismo resultado si multiplicamos 3 x 2 y después lo multiplicamos por 5, que si multiplicamos 2 x 5 y después lo multiplicamos por 3

Elemento neutro: El 1 es el elemento neutro de la multiplicación porque todo número multiplicado por él da el mismo número.

5 x 1 = 5

7 x 1 = 7

En el ejemplo que mostramos, vemos que si multiplicamos 5 o 7 por la unidad, nos da como resultado 5 o 7. Por lo tanto cualquier número que multipliquemos por 1, nos dará como resultado el mismo número.

Propiedad distributiva: La multiplicación de un número por una suma es igual a la suma de las multiplicaciones de dicho número por cada uno de los sumandos.

Pongamos un ejemplo: 2 x (3 + 5)

2x (3 + 5) = 2x3 + 2x5

Según la propiedad distributiva 2 x (3 + 5) será igual a 2 x 3 + 2 x 5

Comprobemos si esto es cierto.

2 x (3 + 5) = 2 x 8 = 16

2 x 3 + 2 x 5 = 6 + 10 = 16

Sacar factor común: Es el proceso inverso a la propiedad distributiva. Si varios sumandos tienen un factor común, podemos transformar la suma en producto extrayendo dicho factor.

Pongamos un ejemplo de sacar factor común. Si tenemos la operación (2 x 7) + (3 x 7), que tiene como factor común el 7, podríamos transformar esta operación en 7 x (2 + 3)

Ambas nos dan como resultado 16, por lo que queda demostrada la propiedad distributiva de la multiplicación.

(2x7) + (3x7) = 7x (2+3)

Comprobemos que da el mismo resultado:

(2 x 7) + (3 x 7) = 14 + 21 = 35

7 x (2 + 3) = 7 x 5 = 35

División:

PROPIEDAD NO CONMUTATIVA: si cambiamos el orden de los números de una división, se altera el resultado. Por ejemplo: 10 ÷ 2 = 5 pero 2 ÷ 10 = 0, 2 .

PROPIEDAD NO ASOCIATIVA: si se descomponen uno o todos los números de una división, o se agrupan de diferentes maneras, el cociente o resultado puede cambiar. Por ejemplo: 400 ÷ 10 ÷ 5 puede dar 8 o 200

...

Descargar como  txt (14.6 Kb)   pdf (163.7 Kb)   docx (21.3 Kb)  
Leer 10 páginas más »
Disponible sólo en Essays.club