TEORIA DEL ERROR EN UNA O VARIAS VARIABLES.
Enviado por John0099 • 16 de Abril de 2018 • 966 Palabras (4 Páginas) • 363 Visitas
...
[pic 62]
[pic 63]
[pic 64]
[pic 65]
[pic 66]
[pic 67]
[pic 68]
[pic 69]
[pic 70]
[pic 71]
[pic 72]
4: Calcular el área de una esfera que tiene un radio de 37,49 0,06 cm.[pic 73]
Rta:
[pic 74]
[pic 75]
[pic 76]
[pic 77]
[pic 78]
[pic 79]
[pic 80]
[pic 81]
[pic 82]
[pic 83]
[pic 84]
[pic 85]
[pic 86]
[pic 87]
[pic 88]
[pic 89]
[pic 90]
[pic 91]
Ahora procedemos a calcular los volúmenes.
1: Calcular el volumen de una esfera que tiene de radio 87.49 0,08 cm, tome π= 3,1416[pic 92]
Rta:
[pic 93]
[pic 94]
[pic 95]
[pic 96]
[pic 97]
[pic 98]
[pic 99]
[pic 100]
[pic 101]
[pic 102]
[pic 103]
[pic 104]
[pic 105]
[pic 106]
[pic 107]
[pic 108]
[pic 109]
[pic 110]
[pic 111]
Calcular el Volumen de un cono de radio 38,647 0,03 cm y altura 68,386 0,004 cm.[pic 112][pic 113]
Rta/
[pic 114]
[pic 115]
[pic 116]
[pic 117]
[pic 118]
[pic 119]
[pic 120]
[pic 121]
[pic 122]
[pic 123]
[pic 124]
[pic 125]
[pic 126]
[pic 127]
[pic 128]
[pic 129]
[pic 130]
[pic 131]
[pic 132]
[pic 133]
[pic 134]
[pic 135]
Calcular el volumen de un cono con una semiesfera en su parte superior de radio 86,45 0,08 cm, la altura del cono es de 164,08 0,02 cm y el radio es igual al de la semiesfera.[pic 136][pic 137]
Rta:
[pic 138]
[pic 139]
[pic 140]
[pic 141]
[pic 142]
[pic 143]
[pic 144]
[pic 145]
[pic 146]
[pic 147]
[pic 148]
[pic 149]
[pic 150]
[pic 151]
[pic 152]
[pic 153]
[pic 154]
[pic 155]
[pic 156]
[pic 157]
[pic 158]
[pic 159]
[pic 160]
[pic 161]
Calcular el volumen de un poliedro cuyas dimensiones son: l=36,48 0,04 cm, a=27,86 0,05 cm y e=34,26 0,07 cm[pic 162][pic 163][pic 164]
Rta/
[pic 165]
[pic 166]
[pic 167]
[pic 168]
[pic 169]
[pic 170]
[pic 171]
[pic 172]
[pic 173]
[pic 174]
[pic 175]
[pic 176]
[pic 177]
[pic 178]
[pic
...