Essays.club - Ensayos gratis, notas de cursos, notas de libros, tareas, monografías y trabajos de investigación
Buscar

Unidad 3 y 4 series de tiempo

Enviado por   •  8 de Febrero de 2018  •  2.521 Palabras (11 Páginas)  •  523 Visitas

Página 1 de 11

...

b= Ʃxy/Ʃx2

Como estamos utilizaron la variable codificada x, sustituimos (X y Ẋ) por (x y Ẋ minúsculas) en la ecuación como la media de nuestra variable temporal codificada Ẋ es 0 se sustituye en la ecuación

X

y

x-Ẋ

XY

X2

1985

98

-3.5*2 =-7

-686

49

1986

105

-2.5*2= -5

-525

25

1987

116

-1.5*2= -3

-388

9

1988

119

-o.5*2= -1

-119

1

1989

135

0.5*2= 1

135

1

1990

156

1.5*2= 3

468

9

1991

177

2.5*2= 5

885

25

1992

208

3.5*2= 7

1456

49

Ʃx=15908

Ʃy=1114

Ʃxy=1226

168

Ẋ=15908/8=1988.5

Ӯ= 1114/8 =139.25

b=1266/168= 7.53

ŷ=139.25+7.53(x)

Ŷ es el número anual estimado de camiones cargados

x valor de tiempo codificado que representa el número de intervalos de medio año (el signo – indica intervalos de medio año anteriores a 1988.5 y el signo + indica intervalos de años posteriores a 1988).

Proyección con ecuación de tendencia

Ya que se determinó la ecuación de tendencia se puede utilizar para predecir la variable en cuestión. En nuestro ejemplo para estimar los cargamentos de camiones en 1993 primero debemos convertir 1993 al valor de tiempo codificado

1993-1988.5= 4.5*2 =9 y obteniendo esto ya se puede sustituir este valor en la ecuación

ŷ=139.25+7.53(x) = ŷ=139.25+7.53 (9)= 207

Uso de una ecuación de segundo grado en una serie temporal.

La ecuación anterior se utiliza para ajustar una línea recta a una serie temporal (ŷ= a+bx). Pero muchas de estas series se describen mejor mediante curvas, no líneas rectas. En estos casos, el modelo lineal no describe de forma adecuada el cambio en la variable conforme avanza el tiempo. Para ello se utiliza una curva parabólica que se describe matemáticamente con una ecuación de segundo grado. (Ver grafica 3). La forma general para una ecuación de segundo grado es:

Ŷ=a+bx+ cx2

Ŷ=estimación de la variable dependiente.

A, b y c= constante numérica.

X= valores codificados de la serie.

Nuevamente se utiliza el método de mínimos cuadrados para determinar la ecuación de segundo grado que describe el mejor ajuste.

Ecuaciones para encontrar “a, b y c” para ajustar una curva parabólica

ƩY= an + cƩx2

ƩX2Y= a Ʃx2 + cƩx4

b= Ʃxy/Ʃx2

Ejercicio:

En los últimos años la venta de relojes electrónicos de cuarzo ha aumentado con una rapidez significativa la tabla contiene información acerca de la venta de estos artículos que nos servirá para encontrar la ecuación.( Excel ejemplo 1)

Primer paso convertir la variable independiente x a una variable de tiempo codificada

Si ahora queremos predecir las ventas de relojes para el año 1997, se debe codificar este año.

Ejercicio dos:

El número de elementos de la planta docente que son dueños de computadoras personales a aumentado drásticamente los últimos 6 años según la siguiente tabla

Año

1987

1988

1989

1990

1991

1992

1989.5

No. De P.C

50

110

350

1020

1950

3710

- Desarrolle una ecuación de estimación lineal que mejor describa estos datos.

- Desarrolle una ecuación de estimación de segundo grado que

...

Descargar como  txt (18.2 Kb)   pdf (183.2 Kb)   docx (29.5 Kb)  
Leer 10 páginas más »
Disponible sólo en Essays.club