LOS TIRISTORES . ELECTRÓNICA III
Enviado por Sara • 23 de Agosto de 2018 • 4.105 Palabras (17 Páginas) • 414 Visitas
...
- Modelos
La acción regenerativa o de enganche debido a la retroalimentación directa se puede demostrar mediante un modelo de tiristor de dos transistores. Un tiristor se puede considerar como dos transistores complementarios, un transistor PNP, Q1, y un transistor NPN, Q2.
Ejemplo :
[pic 3]
La corriente del colector IC de un tiristor se relaciona, en general, con la corriente del emisor IE y la corriente de fuga de la unión colector-base ICBO, como:
IC = IE + ICBO (1)
La ganancia de corriente de base común se define como a =IC/IE. Para el transistor Q1 la corriente del emisor es la corriente del ánodo IA, y la corriente del colector IC1 se puede determinar a partir de la ecuación (1):
IC1 = a1IA + ICBO1 (2)
donde a1 es la ganancia de corriente y ICBO1 es la corriente de fuga para Q1. En forma similar para el transistor Q2, la corriente del colector IC2 es:
IC2 = a2IK + ICBO2 (3)
donde a2 es la ganancia de corriente y ICBO2 es la corriente de fuga correspondiente a Q2. Al combinar IC1 e IC2, obtenemos:
IA = IC1 + IC2 = a1IA + ICBO1 + a2IK + ICBO2 (4)
Pero para una corriente de compuerta igual a IG, IK=IA+IG resolviendo la ecuación anterior en función de IA obtenemos:
IA = a2IG +ICBO1+ICBO2 / 1- (a1 + a2)
Z
- Activación
Un tiristor se activa incrementando la corriente del ánodo. Esto se puede llevar a cabo mediante una de las siguientes formas:
TERMICA. Si la temperatura de un tiristor es alta habrá un aumento en el número de pares electrón-hueco, lo que aumentará las corrientes de fuga. Este aumento en las corrientes hará que a1 y a2 aumenten. Debido a la acción regenerativa (a1 + a2) puede tender a la unidad y el tiristor pudiera activarse. Este tipo de activación puede causar una fuga térmica que por lo general se evita.
LUZ. Si se permite que la luz llegue a las uniones de un tiristor, aumentaran los pares electrón-hueco pudiéndose activar el tiristor. La activación de tiristores por luz se logra permitiendo que esta llegue a los discos de silicio.
ALTO VOLTAJE. Si el voltaje directo ánodo a cátodo es mayor que el voltaje de ruptura directo VBO, fluirá una corriente de fuga suficiente para iniciar una activación regenerativa. Este tipo de activación puede resultar destructiva por lo que se debe evitar.
Si la velocidad de elevación del voltaje ánodo-cátodo es alta, la corriente de carga de las uniones capacitivas puede ser suficiente para activar el tiristor. Un valor alto de corriente de carga puede dañar el tiristor por lo que el dispositivo debe protegerse contra dv/dt alto. Los fabricantes especifican el dv/dt máximo permisible de los tiristores.
CORRIENTE DE COMPUERTA. Si un tiristor está polarizado en directa, la inyección de una corriente de compuerta al aplicar un voltaje positivo de compuerta entre la compuerta y las terminales del cátodo activará al tiristor. Conforme aumenta la corriente de compuerta, se reduce el voltaje de bloqueo directo, podiendo llegar a activarse.
[pic 4]
•Tipos de Tiristores:
Los tiristores se fabrican casi exclusivamente por difusión. La corriente del ánodo requiere de un tiempo finito para propagarse por toda el área de la unión, desde el punto cercano a la compuerta cuando inicia la señal de la compuerta para activar el tiristor. Para controlar el di/dt, el tiempo de activación y el tiempo de desactivación, los fabricantes utilizan varias estructuras de compuerta.
Dependiendo de la construcción física y del comportamiento de activación y desactivación, en general los tiristores pueden clasificarse en ocho categorías:
- Tiristores de control de fase o de conmutación rápida (SCR). 2. Tiristores de desactivación por compuerta (GTO). 3. Tiristores de triodo bidireccional (TRIAC). 4. Tiristores de conducción inversa (RTC). 5. Tiristores de inducción estática (SITH). 6. Rectificadores controlados por silicio activados por luz (LASCR). 7. Tiristores controlados por FET (FET-CTH). 8. Tiristores controlados por MOS (MCT).
Pero en este caso solo hablaremos de los que son de potencia y de control.
Tiristores de Potencia
Los tiristores son una familia de dispositivos semiconductores de cuatro capas (pnpn), que se utilizan para controlar grandes cantidades de corriente mediante circuitos electrónicos de bajo consumo de potencia.
La palabra tiristor, procedente del griego, significa puerta. El nombre es fiel reflejo de la función que efectúa este componente: una puerta que permite o impide el paso de la corriente a través de ella. Así como los transistores pueden operar en cualquier punto entre corte y saturación, los tiristores en cambio sólo conmutan entre dos estados: corte y conducción.
Dentro de la familia de los tiristores, trataremos en este tutorial los tipos más significativos: Diodo Shockley, SCR (Silicon Controlled Rectifier), GCS (Gate Controlled Switch), SCS (Silicon Controlled Switch), Diac y Triac.
El SCR:
El miembro más importante de la familia de los tiristores es el tiristor de tres terminales, conocido también como el rectificador controlado de silicio o SCR. Este dispositivo lo desarrolló la General Electric en 1958 y lo denominó SCR. El nombre de tiristor lo adoptó posteriormente la Comisión Electrotécnica Internacional (CEI). En la figura siguiente se muestra el símbolo de un tiristor de tres terminales o SCR.
Tal como su nombre lo sugiere, el SCR es un rectificador controlado o diodo. Su característica voltaje-corriente, con la compuerta de entrada en circuito abierto, es la misma que la del diodo PNPN.
Lo que hace al SCR especialmente útil para el control de motores en sus aplicaciones es que el voltaje de ruptura o de encendido puede ajustarse por medio de una corriente que fluye hacia su compuerta de entrada. Cuanto mayor sea la corriente de la compuerta, tanto menor se vuelve VBO. Si se escoge un SCR de tal manera que su voltaje de ruptura, sin señal de compuerta, sea mayor que
...