Essays.club - Ensayos gratis, notas de cursos, notas de libros, tareas, monografías y trabajos de investigación
Buscar

Circo de tres pistas.

Enviado por   •  12 de Junio de 2018  •  2.017 Palabras (9 Páginas)  •  505 Visitas

Página 1 de 9

...

77 : 2 = 38 Resto: 1

38 : 2 = 19 Resto: 0

19 : 2 = 9 Resto: 1

9 : 2 = 4 Resto: 1

4 : 2 = 2 Resto: 0

2 : 2 = 1 Resto: 0

1 : 2 = 0 Resto: 1

y, tomando los restos en orden inverso obtenemos la cifra binaria:

7710 = 10011012

Ejercicio 1:

Expresa, en código binario, los números decimales siguientes: 191, 25, 67, 99, 135, 276

- El tamaño de las cifras binarias

La cantidad de dígitos necesarios para representar un número en el sistema binario es mayor que en el sistema decimal. En el ejemplo del párrafo anterior, para representar el número 77, que en el sistema decimal está compuesto tan sólo por dos dígitos, han hecho falta siete dígitos en binario.

Para representar números grandes harán falta muchos más dígitos. Por ejemplo, para representar números mayores de 255 se necesitarán más de ocho dígitos, porque 28 = 256 y podemos afirmar, por tanto, que 255 es el número más grande que puede representarse con ocho dígitos.

Como regla general, con n dígitos binarios pueden representarse un máximo de 2n, números. El número más grande que puede escribirse con n dígitos es una unidad menos, es decir, 2n – 1. Con cuatro bits, por ejemplo, pueden representarse un total de 16 números, porque 24 = 16 y el mayor de dichos números es el 15, porque 24-1 = 15.

Ejercicio 2:

Averigua cuántos números pueden representarse con 8, 10, 16 y 32 bits y cuál es el número más grande que puede escribirse en cada caso.

Ejercicio 3:

Dados dos números binarios: 01001000 y 01000100 ¿Cuál de ellos es el mayor? ¿Podrías compararlos sin necesidad de convertirlos al sistema decimal?

- Conversión de binario a decimal

El proceso para convertir un número del sistema binario al decimal es aún más sencillo; basta con desarrollar el número, teniendo en cuenta el valor de cada dígito en su posición, que es el de una potencia de 2, cuyo exponente es 0 en el bit situado más a la derecha, y se incrementa en una unidad según vamos avanzando posiciones hacia la izquierda.

Por ejemplo, para convertir el número binario 10100112 a decimal, lo desarrollamos teniendo en cuenta el valor de cada bit:

1*26 + 0*25 + 1*24 + 0*23 + 0*22 + 1*21 + 1*20 = 83

10100112 = 8310

Ejercicio 4:

Expresa, en el sistema decimal, los siguientes números binarios:

110111, 111000, 010101, 101010, 1111110

Sistema de numeración octal

El inconveniente de la codificación binaria es que la representación de algunos números resulta muy larga. Por este motivo se utilizan otros sistemas de numeración que resulten más cómodos de escribir: el sistema octal y el sistema hexadecimal. Afortunadamente, resulta muy fácil convertir un número binario a octal o a hexadecimal.

En el sistema de numeración octal, los números se representan mediante ocho dígitos diferentes: 0, 1, 2, 3, 4, 5, 6 y 7. Cada dígito tiene, naturalmente, un valor distinto dependiendo del lugar que ocupen. El valor de cada una de las posiciones viene determinado por las potencias de base 8.

Por ejemplo, el número octal 2738 tiene un valor que se calcula así:

2*83 + 7*82 + 3*81 = 2*512 + 7*64 + 3*8 = 149610

2738 = 149610

- Conversión de un número decimal a octal

La conversión de un número decimal a octal se hace con la misma técnica que ya hemos utilizado en la conversión a binario, mediante divisiones sucesivas por 8 y colocando los restos obtenidos en orden inverso. Por ejemplo, para escribir en octal el número decimal 12210 tendremos que hacer las siguientes divisiones:

122 : 8 = 15 Resto: 2

15 : 8 = 1 Resto: 7

1 : 8 = 0 Resto: 1

Tomando los restos obtenidos en orden inverso tendremos la cifra octal:

12210 = 1728

Ejercicio 5:

Convierte los siguientes números decimales en octales: 6310, 51310, 11910

- Conversión octal a decimal

La conversión de un número octal a decimal es igualmente sencilla, conociendo el peso de cada posición en una cifra octal. Por ejemplo, para convertir el número 2378 a decimal basta con desarrollar el valor de cada dígito:

2*82 + 3*81 + 7*80 = 128 + 24 + 7 = 15910

2378 = 15910

Ejercicio 6:

Convierte al sistema decimal los siguientes números octales: 458, 1258, 6258

Sistema de numeración hexadecimal

En el sistema hexadecimal los números se representan con dieciséis símbolos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E y F. Se utilizan los caracteres A, B, C, D, E y F representando las cantidades decimales 10, 11, 12, 13, 14 y 15 respectivamente, porque no hay dígitos mayores que 9 en el sistema decimal. El valor de cada uno de estos símbolos depende, como es lógico, de su posición, que se calcula mediante potencias de base 16.

Calculemos, a modo de ejemplo, el valor del número hexadecimal 1A3F16:

1A3F16 = 1*163 + A*162 + 3*161 + F*160

1*4096 + 10*256 + 3*16 + 15*1 = 6719

1A3F16 = 671910

Ejercicio 7:

Expresa en el sistema decimal

...

Descargar como  txt (12.7 Kb)   pdf (61.5 Kb)   docx (21.1 Kb)  
Leer 8 páginas más »
Disponible sólo en Essays.club