Essays.club - Ensayos gratis, notas de cursos, notas de libros, tareas, monografías y trabajos de investigación
Buscar

DEPARTAMENTO DE INGENIERÍA CIVIL CANALES ABIERTOS

Enviado por   •  29 de Noviembre de 2018  •  3.523 Palabras (15 Páginas)  •  443 Visitas

Página 1 de 15

...

Sección triangular: Se usa en pequeños canales de drenaje vial como cunetas.

Sección parabólica: Se emplea en algunas ocasiones para canales revestidos y es la forma que toman aproximadamente muchos canales naturales y canales viejos de tierra.

En el caso de los canales cerrados las secciones más comunes son:

Sección circular: Se emplea en canales de alcantarillados y drenaje urbano y agrícola de tamaños pequeños y medianos. También en los canales en túneles.

Sección parabólica u ovoides: Se usan comúnmente para alcantarillas y estructuras hidráulicas importantes, para el ingreso de un hombre.

[pic 3]

Figura 2. Secciones más comunes para canales.

ELEMENTOS DE UN CANAL

La geometría de la sección de un canal queda definida por varios elementos, que en este caso su descripción será referida a un canal de sección trapezoidal.[pic 4]

Figura 3. Elementos de un canal trapezoidal.

y = Profundidad del flujo

d = Profundidad de la sección. d = y. cosθ

b = Ancho del fondo

t = Talud de la pared. t = cotgα = ΔH/ΔV

T = ancho superficial. T = b + 2.t.y

A = Área mojada. A = b.y + t.y2

P = Perímetro mojado. P = b + 2.y.√1 + t2

R = Radio hidráulico. R = A/P

D = Profundidad hidráulica. A/T

f = Freeboard o margen libre

Be = Ancho del banco o banqueta exterior

Bi = Ancho del banco o banqueta interior

Nota: El freeboard es la distancia vertical medida entre la superficie libre del agua y el borde del canal.

NUMERO DE REYNOLDS

El número de Reynolds (Re) se define como la relación entre las fuerzas inerciales y las fuerzas viscosas presentes en un fluido. Este relaciona la densidad, viscosidad, velocidad y dimensión típica de un flujo en una expresión adimensional que interviene en numerosos problemas de la dinámica de los fluidos.

Dicho número o combinación adimensional aparece en muchos casos relacionado con el hecho de que un flujo pueda ser laminar, turbulento o transicional y se calcula para canales abiertos según la siguiente expresión:

Re =ρ.V .R / µ

donde:

V = velocidad media de la sección del canal.

R = Radio hidráulico (A/P).

µ = viscosidad cinemática del fluido.

ρ = densidad del fluido.

Si el número de Reynolds resulta menor 500 (Re12500 el régimen de flujo será turbulento, y como consecuencia, el flujo será transicional si tiene lugar con valores entre 500 y 12500 (500

NUMERO DE FROUDE

El número de Froude (Fr) es un número adimensional que relaciona el efecto de las fuerzas de inercia y las fuerzas de gravedad que actúan sobre un fluido. Este debe su nombre al ingeniero hidrodinámico y arquitecto naval inglés William Froude. Para el diseño de canales abiertos este número nos informa sobre el estado del flujo hidráulico y se define como:

Fr = υ / √g.D

siendo:

υ = velocidad media de la sección del canal (m/seg)

g = aceleración de la gravedad (m/seg2)

D = Profundidad hidráulica (m)

En el caso en que Fr>1, significa que el régimen del flujo en el canal es supercrítico, si Fr=1, entonces el régimen de flujo en el canal será crítico y sí Fr

DISTRIBUCIÓN DE VELOCIDADES EN UN CANAL

A diferencia de las tuberías, debido a la presencia de una superficie libre y a la fricción a lo largo de las paredes, en un canal las velocidades no están uniformemente distribuidas en su sección. Para el estudio de las velocidades del fluido en el canal se estudia la sección transversal del mismo, así como la sección longitudinal.

Sección transversal

La resistencia ofrecida por las paredes y el fondo del canal producen una reducción de la velocidad, en la superficie libre. La resistencia ofrecida por la atmosfera y el viento también influyen sobre la velocidad.La velocidad máxima en los canales será encontrada en la vertical (1)de la figura 4, por debajo de la superficie libre, a una distancia entre 0,05 a 0,25 de la profundidad del mismo.

[pic 5]

Figura 4. Sección transversal.

Sección longitudinal

La figura 5 muestra la variación de la velocidad en las verticales (1), (2) y (3) indicadas en la figura 4. Considerándose la velocidad media en determinada sección como igual a 1.0, se puede trazar el diagrama de variación de velocidades con respecto a la profundidad (Figura 6).

[pic 6]

Figura 5. Variación de velocidades en las verticales (1), (2), (3).

[pic 7]

Figura 6. Variación de la velocidad con la profundidad.

En la siguiente figura se muestran los modelos generales para la distribución de velocidades en diferentes secciones de canal.

[pic 8]

Figura 7. Curvas comunes de igual velocidad en diferentes

secciones de canal.

La distribución de velocidades en una sección de canal también depende de otros factores, entre ellos la forma inusual de la sección, la presencia de curvas a lo largo del canal, entre otras. En una curva,

...

Descargar como  txt (22.9 Kb)   pdf (155.4 Kb)   docx (584.6 Kb)  
Leer 14 páginas más »
Disponible sólo en Essays.club