MÉTODOS NUMÉRICOS.
Enviado por tomas • 5 de Julio de 2018 • 727 Palabras (3 Páginas) • 261 Visitas
...
adecuado’)
delta=0.0005;
max1=10;
[c,err,yc]=falsa1(a,b,delta,max1)
Nombre del programa: Prog01.sce
4) Desde el editor de SCILAB cargue en SCILAB los archivos: fun1, falsa1 y desde la ventana de comandos ejecute Prog01, observe los resultados en la consola de comandos del SCILAB
// Programa biseccion
clc;close;
clear;funcprot(0);
function x=bisection(a, b, f)
N=100; // define max. number of iterations
PE=10^-4 // define tolerance
if (f(a)*f(b) > 0) then
// error(’my error message’)
error(’ no root possible f(a)*f(b) > 0 ’)
// checking if the decided range is containing a root
abort;
end;
if(abs(f(a)) <PE) then
error( ’ solution at a ’) // seeing i f there is an approximate root at a ,
abort;
end;
if(abs(f(b)) < PE) then // seeing i f there is an approximate root at b ,
error(’ solution at b ’ )
abort;
end;
x=(a+b)/2
for n=1:1:N // i n i t i a l i s i n g "for" loop ,
p=f(a)*f(x)
if p<0 then b=x ,x=(a+x)/2; // checking for the required conditions ( f(x)*f(a)<0) ,
else
a=x
x=(x+b)/2;
end
if abs(f(x))<=PE then break // instruction to come out of the loop after the required condition is achived ,
end
end
disp(n,’ no. of iterations =’) // display the no . of iterations took to achive required condition ,
endfunction
// The equation y=x.^3-5*x+1==0 has real roots .
// the graph of this function can be observed here .
xset(’window’,2);
x=-2:.01:4; // defining the range of x .
deff(’[y]=f(x)’,’y=x.^3-5*x+1’);
//deff(’[y]= f(x)’,’y=y=x.^3-5*x+1’);
// defining the function
y=feval(x,f);
a=gca();
a.y_location = ’origin’;
a.x_location = ’origin’;
plot(x,y)
// instruction to plot the graph
title(’y=x.^3-5*x+1’)
// from the above plot we can infre that the function has roots between
// the intervals (0 ,1) ,(2 ,3)
// since we have been asked for the smallest positive root of the equation,
// we are intrested on the interval (0 ,1)
// a=0;b=1,
// we c all a user−defined function ’ bisection ’ so as to find the approximate
// root of the equation with a defined permissible error .
xgrid
r=bisection(0,1,f);
disp(r, ’raíz =’)
...