Resumen del Libro Historia del Tiempo de Stephen Hawking
Enviado por Rebecca • 12 de Diciembre de 2017 • 10.638 Palabras (43 Páginas) • 721 Visitas
...
Fue dicho descubrimiento el que finalmente llevó la cuestión del principio del universo a los dominios de la ciencia.
Las observaciones de Hubble sugerían que hubo un tiempo, llamado el big bang, en que el universo era infinitésimamente pequeño e infinitamente denso. Bajo tales condiciones, todas las leyes de la ciencia, y, por tanto, toda capacidad de predicción del futuro, se desmoronarían.
Uno podría decir que el tiempo tiene su origen en el big bang, en el sentido de que los tiempos anteriores simplemente no estarían definidos. Es señalar que este principio del tiempo es radicalmente diferente de aquellos previamente considerados. Uno puede imaginarse que Dios creó el universo en, textualmente, cualquier instante de tiempo. Por el contrario, si el universo se está expandiendo, pueden existir poderosas razones físicas para que tenga que haber un principio. Uno aún se podría imaginar que Dios creó el universo en el instante del big bang, pero no tendría sentido suponer que el universo hubiese sido creado antes del big bang. ¡Universo en expansión no excluye la existencia de un creador, pero sí establece límites sobre cuándo éste pudo haber llevado a cabo su misión!
Una teoría es una buena teoría siempre que satisfaga dos requisitos: debe describir con precisión un amplio conjunto de observaciones sobre la base de un modelo que contenga sólo unos pocos parámetros arbitrarios, y debe ser capaz de predecir positivamente los resultados de observaciones futuras. Por ejemplo, la teoría de Aristóteles de que todo estaba constituido por cuatro elementos, tierra, aire, fuego y agua, era lo suficientemente simple como para ser cualificada como tal, pero fallaba en que no realizaba ninguna predicción concreta. Por el contrario, la teoría de la gravedad de Newton estaba basada en un modelo incluso más simple, en el que los cuerpos se atraían entre sí con una fuerza proporcional a una cantidad llamada masa e inversamente proporcional al cuadrado de la distancia entre ellos, a pesar de lo cual era capaz de predecir el movimiento del Sol, la Luna y los planetas con un alto grado de precisión.
Cualquier teoría física es siempre provisional, en el sentido de que es sólo una hipótesis: nunca se puede probar. A pesar de que los resultados de los experimentos concuerden muchas veces con la teoría, nunca podremos estar seguros de que la próxima vez el resultado no vaya a contradecirla.
En la práctica, lo que sucede es que se construye una nueva teoría que en realidad es una extensión de la teoría original. Por ejemplo, observaciones tremendamente precisas del planeta Mercurio revelan una pequeña diferencia entre su movimiento y las predicciones de la teoría de la gravedad de Newton. La teoría de la relatividad general de Einstein predecía un movimiento de Mercurio ligeramente distinto del de la teoría de Newton. El hecho de que las predicciones de Einstein se ajustaran a las observaciones, mientras que las de Newton no lo hacían, fue una de las confirmaciones cruciales de la nueva teoría.
El objetivo final de la ciencia es el proporcionar una única que describa correctamente todo el universo. Sin embargo, el método que la mayoría de los científicos siguen en realidad es el de separar el problema en dos partes. Primero, están las leyes que nos dicen cómo cambia el universo con el tiempo. (Si conocemos cómo es el universo en un instante dado, estas leves físicas nos dirán cómo será el universo en cualquier otro posterior.) Segundo, está la cuestión del estado inicial del universo.
Es muy difícil construir una única teoría capaz de describir todo el universo. En vez de ello, nos vemos forzados, de momento, a dividir el problema en varias partes, inventando un cierto número de teorías parciales.
Los científicos actuales describen el universo a través de dos teorías parciales fundamentales: la teoría de la relatividad general y la mecánica cuántica. Ellas constituyen el gran logro intelectual de la primera mitad de este siglo. La teoría de la relatividad general describe la fuerza de la gravedad y la estructura a gran escala del universo, es decir, la estructura a escalas que van desde sólo unos pocos kilómetros hasta un billón de billones (un 1 con veinticuatro ceros detrás) de kilómetros, el tamaño del universo observable. La mecánica cuántica, por el contrario, se ocupa de los fenómenos a escalas extremadamente pequeñas, tales como una billonésima de centímetro.
CAPÍTULO II
ESPACIO Y TIEMPO
Nuestras ideas actuales acerca del movimiento de los cuerpos se remontan a Galileo y Newton. Antes de ellos, se creía en las ideas de Aristóteles, quien decía que el estado natural de un cuerpo era estar en reposo y que éste sólo se movía si era empujado por una fuerza o un impulso.
La tradición aristotélica también mantenía que se podrían deducir todas las leyes que gobiernan el universo por medio del pensamiento puro: no era necesario comprobarlas por medio de la observación. Así, nadie antes de Galileo se preocupó de ver si los cuerpos con pesos diferentes caían con velocidades diferentes. Se dice que Galileo demostró que las anteriores ideas de Aristóteles eran falsas dejando caer diferentes pesos desde la torre inclinada de Pisa. Dejó caer bolas de distintos pesos a lo largo de un plano inclinado. La situación es muy similar a la de los cuerpos pesados que caen verticalmente, pero es más fácil de observar porque las velocidades son menores. Las mediciones de Galileo indicaron que cada cuerpo aumentaba su velocidad al mismo ritmo, independientemente de su peso. Por ejemplo, si se suelta una bola en una pendiente que desciende un metro por cada diez metros de recorrido, la bola caerá por la pendiente con una velocidad de un metro por segundo después de un segundo, de dos metros por segundo después de dos segundos, y así sucesivamente, sin importar lo pesada que sea la bola. Por supuesto que una bola de plomo caerá más rápida que una pluma, pero ello se debe únicamente a que la pluma es frenada por la resistencia del aire. Si uno soltara dos cuerpos que no presentasen demasiada resistencia al aire, tales como dos pesos diferentes de plomo, caerían con la misma rapidez.
Las mediciones de Galileo sirvieron de base a Newton para la obtención de sus leyes del movimiento. En los experimentos de Galileo, cuando un cuerpo caía rodando, siempre actuaba sobre él la misma fuerza (su peso) y el efecto que se producía consistía en acelerarlo de forma constante. Esto demostraba que el efecto real de una fuerza era el de cambiar la velocidad del cuerpo, en vez de simplemente
...