RESUMEN DE FÓRMULAS DE FÍSICA I
Enviado por David Rivera • 3 de Noviembre de 2022 • Trabajo • 5.634 Palabras (23 Páginas) • 258 Visitas
RESUMEN DE FÓRMULAS DE FÍSICA I
𝑣 = Δ𝑥 = 𝑥 − 𝑥0
[pic 1] [pic 2]
UNIDAD: CINEMÁTICA
(𝑣𝑒𝑙𝑜𝑐i𝑑𝑎𝑑 𝑚𝑒𝑑i𝑎 𝑒𝑛 𝑥)
𝑚𝑒𝑑
Δ𝑡
𝑡 − 𝑡0
𝑣 = 𝑙i𝑚
Δ𝑥 = 𝑙i𝑚
[pic 3]
𝑥 − 𝑥0 = 𝑑𝑥
[pic 4] [pic 5]
(𝑣𝑒𝑙𝑜𝑐i𝑑𝑎𝑑 i𝑛𝑠𝑡𝑎𝑛𝑡á𝑛𝑒𝑎 𝑒𝑛 𝑥)
𝑥 Δ𝑡→0 Δ𝑡 Δ𝑡→0
𝑡 − 𝑡0 𝑑𝑡
𝑎 = Δ𝑣 = 𝑣 − 𝑣0
[pic 6] [pic 7]
(𝑎𝑐𝑒𝑙𝑒𝑟𝑎𝑐ió𝑛 𝑚𝑒𝑑i𝑎 𝑒𝑛 𝑥)
𝑚𝑒𝑑
Δ𝑡
𝑡 − 𝑡0
𝑎 = 𝑙i𝑚
Δ𝑣 = 𝑙i𝑚
𝑣−𝑣0 = 𝑑𝑣 = 𝑑2𝑥
[pic 8]
(𝑎𝑐𝑒𝑙𝑒𝑟𝑎𝑐ió𝑛 i𝑛𝑠𝑡𝑎𝑛𝑡á𝑛𝑒𝑎 𝑒𝑛 𝑥)
𝑥 Δ𝑡→0
Δ𝑡
1
[pic 9]
Δ𝑡→0
2
𝑡−𝑡0
𝑑𝑡
𝑑𝑡2
𝑥 = 𝑥0 + 𝑣𝑡 + 2 𝑎𝑡
(𝑝𝑜𝑠i𝑐ió𝑛 fi𝑛𝑎𝑙 𝑒𝑛 𝑥 ; 𝑎 = 𝑐𝑡𝑒)
𝑥 = 𝑥0
+ (𝑣0 + 𝑣) 𝑡 (𝑎 = 𝑐𝑡𝑒) 2
𝑣 = 𝑣0 + 𝑎𝑡 (𝑣𝑒𝑙𝑜𝑐i𝑑𝑎𝑑 fi𝑛𝑎𝑙 𝑒𝑛 𝑥 ; 𝑎 = 𝑐𝑡𝑒)
𝑣2 = 𝑣02 + 2𝑎𝑥 (𝑎 = 𝑐𝑡𝑒)
𝑟⃗ = 𝑥ı⃗ + 𝑦𝑗⃗ + 𝑧𝑘⃗⃗ (𝑣𝑒𝑐𝑡𝑜𝑟 𝑝𝑜𝑠i𝑐ió𝑛 𝑒𝑛 𝑒𝑙 𝑒𝑠𝑝𝑎𝑐i𝑜)
𝑣⃗
= Δ𝑟⃗ = 𝑟⃗ − 𝑟⃗0
[pic 10] [pic 11]
(𝑣𝑒𝑙𝑜𝑐i𝑑𝑎𝑑 𝑚𝑒𝑑i𝑎)
𝑚𝑒𝑑
Δ𝑡 𝑡 − 𝑡0
𝑣⃗ = 𝑙i𝑚
Δ𝑟⃗ = 𝑙i𝑚
[pic 12]
𝑟⃗ − 𝑟⃗0 = 𝑑𝑟⃗
[pic 13] [pic 14]
(𝑣𝑒𝑙𝑜𝑐i𝑑𝑎𝑑 i𝑛𝑠𝑡𝑎𝑛𝑡á𝑛𝑒𝑎)
Δ𝑡→0
Δ𝑡
Δ𝑡→0 𝑡 − 𝑡0
𝑑𝑡
𝑣𝑥
= 𝑑𝑥
𝑑𝑡[pic 15]
; 𝑣𝑦
= 𝑑𝑦
𝑑𝑡[pic 16]
; 𝑣𝑧
= 𝑑𝑧
𝑑𝑡[pic 17]
(𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑒𝑠 𝑑𝑒 𝑙𝑎 𝑣𝑒𝑙𝑜𝑐i𝑑𝑎𝑑)
[pic 18]
|⃗𝑣⃗⃗⃗| = √𝑣𝑥2 + 𝑣𝑦2 + 𝑣𝑧2 (𝑚ó𝑑𝑢𝑙𝑜 𝑑𝑒 𝑙𝑎 𝑣𝑒𝑙𝑜𝑐i𝑑𝑎𝑑)
𝑎⃗
= Δ𝑣⃗ = 𝑣⃗ − 𝑣⃗0
[pic 19] [pic 20]
(𝑎𝑐𝑒𝑙𝑒𝑟𝑎𝑐ió𝑛 𝑚𝑒𝑑i𝑎)
𝑚𝑒𝑑
Δ𝑡 𝑡 − 𝑡0
Δ𝑣⃗
𝑣⃗ − 𝑣⃗0 𝑑𝑣⃗ 𝑑2𝑟⃗[pic 21][pic 22][pic 23]
𝑎⃗ = 𝑙i𝑚
Δ𝑡→0
[pic 24]
Δ𝑡
= 𝑙i𝑚
Δ𝑡→0
𝑡 − 𝑡0
= 𝑑𝑡
= 𝑑𝑡
2 (𝑎𝑐𝑒𝑙𝑒𝑟𝑎𝑐ió𝑛 i𝑛𝑠𝑡𝑎𝑛𝑡á𝑛𝑒𝑎)
𝑑𝑣𝑥 𝑑2𝑥[pic 25]
𝑑𝑣𝑦 𝑑2𝑦
𝑑𝑣𝑧 𝑑2𝑧
𝑎𝑥 =[pic 26][pic 27][pic 28][pic 29]
𝑑𝑡 = 𝑑𝑡2 ; 𝑎𝑦 =
𝑑𝑡 = 𝑑𝑡2 ; 𝑎𝑧 =
𝑑𝑡 = 𝑑𝑡2 (𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑒𝑠 𝑑𝑒 𝑙𝑎 𝑎𝑐𝑒𝑙𝑒𝑟𝑎𝑐ió𝑛)
[pic 30]
|⃗𝑎⃗⃗⃗| = √𝑎𝑥2 + 𝑎𝑦2 + 𝑎𝑧2 (𝑚ó𝑑𝑢𝑙𝑜 𝑑𝑒 𝑙𝑎 𝑎𝑐𝑒𝑙𝑒𝑟𝑎𝑐ió𝑛)
𝑥 = 𝑣0 𝑐𝑜𝑠(𝛼) 𝑡 (𝑝𝑜𝑠i𝑐ió𝑛 fi𝑛𝑎𝑙 𝑒𝑛 𝑥, 𝑚𝑜𝑣i𝑚i𝑒𝑛𝑡𝑜 𝑑𝑒 𝑝𝑟𝑜𝑦𝑒𝑐𝑡i𝑙)
𝑦 = 𝑣0
𝑠𝑒𝑛(𝛼) − 1 𝑔𝑡2 (𝑝𝑜𝑠i𝑐ió𝑛 fi𝑛𝑎𝑙 𝑒𝑛 𝑦, 𝑚𝑜𝑣i𝑚i𝑒𝑛𝑡𝑜 𝑑𝑒 𝑝𝑟𝑜𝑦𝑒𝑐𝑡i𝑙) 2
...