Essays.club - Ensayos gratis, notas de cursos, notas de libros, tareas, monografías y trabajos de investigación
Buscar

Estadistica inferencial I probabilidad

Enviado por   •  15 de Diciembre de 2017  •  2.304 Palabras (10 Páginas)  •  3.474 Visitas

Página 1 de 10

...

- ¿Cuál es la probabilidad de que un empleado seleccionado al azar necesite calzado correctivo o un trabajo dental considerable? .05+.15-.03=.17

- Muestre esta situación con un diagrama de Venn

[pic 2][pic 1]

Ejercicio 15, página 163.

Los eventos A y B son mutuamente excluyentes. Supóngase que P(A) = 0.03 y P(B) = 0.20. Cuál es la probabilidad de que no suceda A ni B?.

P(A).03+P(B).20=.23 (1-.23)= .77

Ejercicio 21, página 164.

Se tira un solo dado. El evento A es “sale un 4”, el evento B es “sale un numero par”, y el evento C corresponde a “sale un número impar”. Considere todas las parejas posibles de estos eventos e indique si son mutuamente excluyentes. Después identifique si son complementarias.

A)=4 C)=impar A, B= no son mutuamente excluyente. A, C= mutuamente excluyentes.

B)=par B, C= mutuamente excluyentes y complementarios.

Ejercicio 23, página 164.

Las probabilidades de los eventos A y B son 0.20 y 0.30, respectivamente. La probabilidad de que tanto A como B ocurran es 0.15. ¿Cuál es la probabilidad de que suceda A o B?

A=.05

B=.15

Ejercicio 25, página 164.

Supóngase que los dos eventos A y B son mutuamente excluyentes. ¿Cuál es la probabilidad de su ocurrencia conjunta?. P(AUB)= P(A)+P(B)

Ejercicio 27, página 164.

Una encuesta a ejecutivos de alto nivel en EUA, revelo que el 35% lee con regularidad la revista Time, 20% LEEN Newsweek, y 40%leen U.S. News. Un 10% lee tanto Time como U.S.News & World Report.

a)¿Cuál es la probabilidad de que un ejecutivo determinado lea Times; o bien, U.S. & World Report con regularidad? .55

b) ¿Cómo se denomina a la probabilidad con valor de 0.10? Probabilidad clásica.

c) Los eventos involucrados en este caso de estudio, ¿son mutuamente excluyentes? ¿Por qué?

Si, ya que el planteamiento los divide en un grupo específico de lectores.

- Trace el diagrama de Ven que ilustre este experimento.

[pic 4][pic 3]

e) ¿Cuál enfoque de la probabilidad se ilustra en este caso?

Clasico

Autoexamen 5.8

- Refiérase al contenido del diagrama 5.1. Explique qué ruta seguiría para encontrar la probabilidad conjunta de seleccionar un ejecutivo al azar, que tenga de 6 a 10 años de servicio y que no permaneciera a la empresa al recibir una oferta igual o ligeramente mejor de parte de otra compañía.

Diagrama de árbol.

2. Se seleccionó una muestra al azar de los empleados de la empresa Hardware Mufacturing Co. para determinar sus planes de jubilación después de haber cumplido 65 años. Los seleccionados en la muestra se dividieron en las aéreas de gerencia y producción. Los resultados fueron:

PLAN DESPUÉS DE LOS 65 AÑOS

EMPLEADO SE RETIRA NO SE RETIRA TOTAL

Gerencia 5 15 20

Producción 30 50 80

-------------

100

a) ¿Cómo se denomina esta tabla? Tabla de contingencia

b) Elabore un diagrama de árbol y determine las probabilidades conjuntas.

[pic 5]

[pic 6][pic 7]

[pic 8][pic 9][pic 10][pic 11][pic 12]

[pic 13]

100[pic 14][pic 15][pic 16][pic 17][pic 18][pic 19]

[pic 20]

[pic 21][pic 22]

[pic 23]

c) ¿Estas probabilidades conjuntas suman 1.00? ¿Por qué? Cumple con el segundo axioma de kolmogorov.

Ejercicio 47, página 180.

Un entrenador selecciono al azar 4 de 10 personas disponibles. ¿Cuántos grupos diferentes de 4 se pueden hacer?

nCr= 210

Ejercicio 49, página 180.

Una empresa de mensajería nocturna rápida debe abarcar cinco ciudades en su recorrido. ¿Cuántas rutas diferentes se puede hacer, suponiendo que no importa el orden en el que se visiten las ciudades en el recorrido?

5!= 120

Ejercicio 52 pagina 180.

Una empresa está creando tres divisiones nuevas, y hay siete gerentes disponibles para dirigir una división. ¿De cuántos modos se pueden nombrar los tres nuevos dirigentes?

nCr=35

Ejercicios de Autoevaluación

I. Responde las siguientes preguntas.

- ¿Qué es la estadística inferencial?

Es una parte de la estadística que comprende los métodos y procedimientos que por medio de la inducción determina propiedades de una población estadística, a partir de una pequeña parte de la misma.

- ¿Cómo se define probabilidad?

Es el valor que va desde cero hasta uno, inclusive, que describe la posibilidad relativa de que ocurra un evento.

3. ¿Qué señalan los tres primeros axiomas de Kolmogorov?

Axioma 1. La probabilidad de un suceso es siempre mayor o igual que cero y menor o igual que uno.

Axioma 2. La probabilidad

...

Descargar como  txt (16.1 Kb)   pdf (72.5 Kb)   docx (23.5 Kb)  
Leer 9 páginas más »
Disponible sólo en Essays.club