Fundamentos numericos.
Enviado por Rebecca • 8 de Marzo de 2018 • 876 Palabras (4 Páginas) • 345 Visitas
...
Por ejemplo, para convertir el número binario 10100112 a decimal, lo desarrollamos teniendo en cuenta el valor de cada bit:
1*26 + 0*25 + 1*24 + 0*23 + 0*22 + 1*21 + 1*20 = 83
10100112 = 8310
Sistema de numeración octal
El inconveniente de la codificación binaria es que la representación de algunos números resulta muy larga. Por este motivo se utilizan otros sistemas de numeración que resulten más cómodos de escribir: el sistema octal y el sistema hexadecimal. Afortunadamente, resulta muy fácil convertir un número binario a octal o a hexadecimal.
En el sistema de numeración octal, los números se representan mediante ocho dígitos diferentes: 0, 1, 2, 3, 4, 5, 6 y 7. Cada dígito tiene, naturalmente, un valor distinto dependiendo del lugar que ocupen. El valor de cada una de las posiciones viene determinado por las potencias de base 8.
Por ejemplo, el número octal 2738 tiene un valor que se calcula así:
2*83 + 7*82 + 3*81 = 2*512 + 7*64 + 3*8 = 149610
2738 = 149610
- CONVERSIÓN DE UN NÚMERO DECIMAL A OCTAL
La conversión de un número decimal a octal se hace con la misma técnica que ya hemos utilizado en la conversión a binario, mediante divisiones sucesivas por 8 y colocando los restos obtenidos en orden inverso. Por ejemplo, para escribir en octal el número decimal 12210 tendremos que hacer las siguientes divisiones:
122 : 8 = 15 Resto: 2
15 : 8 = 1 Resto: 7
1 : 8 = 0 Resto: 1
Tomando los restos obtenidos en orden inverso tendremos la cifra octal:
12210 = 1728
Conversión octal a decimal
La conversión de un número octal a decimal es igualmente sencilla, conociendo el peso de cada posición en una cifra octal. Por ejemplo, para convertir el número 2378 a decimal basta con desarrollar el valor de cada dígito:
2*82 + 3*81 + 7*80 = 128 + 24 + 7 = 15910
2378 = 15910
...