Essays.club - Ensayos gratis, notas de cursos, notas de libros, tareas, monografías y trabajos de investigación
Buscar

MAGNITUDES VECTORIALES Y ESCALARES

Enviado por   •  3 de Noviembre de 2018  •  6.567 Palabras (27 Páginas)  •  433 Visitas

Página 1 de 27

...

T = tiempo (seg)

Yo = Altura inicial (m)

Observación: en los movimientos de subida libre es indispensable realizar los análisis de cúspide para poder determinar el tiempo de subida, tiempo de bajada. Tiempos de vuelo y alturas máximas de la partícula analizada teniendo en cuenta de que la velocidad final vertical en dicha cúspide siempre va ser igual a cero (Vf = 0)

MOVIMIENTO PARABOLICO O PROYECTILES

Cuando hablamos de movimiento parabólico tendremos desplazamientos tanto en el eje x como en el eje y, velocidades tanto en x como velocidades en y, ya que el móvil presentara un Angulo de partida ya sea medido desde cualquiera de los dos ejes cartesianos (x o y).

Suponiendo que el Angulo de partida (Θx) sea medido desde el eje x:

Para el eje x tendremos un MRU:

X = Vx * T ; donde:

X = desplazamiento horizontal

Vx = velocidad horizontal = Vi * cos (Θx)

T= tiempo

Para el eje y tendremos un MRUA donde la aceleración de la gravedad conducirá a que todo cuerpo que suba tiene que bajar:

Movimientos en caída:

Vfy = Viy + gT

Vfy² = Viy² + 2gy

Y = ViyT + ½ a T² + Yo

Movimientos en subida:

Vfy = Viy - gT

Vfy² = Viy² - 2gy

Y = ViyT - ½ a T² + Yo

Donde:

Y = desplazamiento Vertical

Viy = velocidad inicial vertical = Vi * sen (Θx)

Vfy = velocidad fina vertical = Vf * sen (Θx)

T = tiempo

g = aceleración de la gravedad

Observación: en los movimientos parabólicos o de proyectiles es indispensable realizar los análisis de cúspide para poder determinar el tiempo de subida, tiempo de bajada. Tiempos de vuelo y alturas máximas de la partícula analizada teniendo en cuenta de que la velocidad final vertical en dicha cúspide siempre va ser igual a cero (Vfy = 0)

MCU= movimiento circular uniforme

El movimiento circular uniforme es un movimiento en cual se describe un desplazamiento netamente circular (rotación) constante (velocidad angular w constante); por lo cual no existirá ningún tipo de aceleración o desaceleración (aceleración angular = 0).

Su ecuación de movimiento característica es:

Θ = w * T ; donde:

Θ = Angulo recorrido en radianes (rad)

w = velocidad angular en (rad / seg)

T = tiempo de rotación (seg)

MCUA= movimiento circular uniformemente acelerado

El movimiento circular uniformemente acelerado es un movimiento en cual se describe un desplazamiento netamente circular (rotación) con variaciones de velocidad angular, por lo cual existirán aceleraciones o desaceleraciones angulares (α≠o)

Sus ecuaciones características serán:

Movimientos acelerados: wf > wi

wf = wi + aT

wf² = wi² + 2αΘ

Θ= wi T + ½ α T² + Θo

Movimientos desacelerados: Vi > Vf

wf = wi - aT

wf² = wi² - 2αΘ

Θ= wi T - ½ α T² + Θo

Donde Θ = Angulo recorrido en radianes (rad)

wi = velocidad angular inicial en (rad / seg)

wf = wi = velocidad angular final en (rad / seg)

α = aceleración angular (rad/seg²)

T = tiempo (seg)

Θo = Angulo inicial (rad)

LEYES DE NEWTON

Estática y Dinámica

Estática:

Cuando hablamos de leyes de Newton nos referimos a las tres reglas que instauro el científico Sir Isaac Newton con las cuales podemos llevar a cabo los análisis de los cuerpos en estado de reposo o en movimiento que han experimentado una o varias fuerzas.

Las leyes de Newton son:

1-Ley de la fuerza: toda fuerza aplicada a un cuerpo es proporcional a la multiplicación de su masa por la aceleración que experimenta dicho cuerpo.

F = m * a; donde

F = fuerza aplicada al cuerpo en Newton (N) ( Kg * m/seg²)

m = masa del cuerpo en Kg

a = aceleración que experimenta el cuerpo (m/seg²)

2-Ley de la Inercia: todo cuerpo tiende a mantener su situación de equilibrio.

3-Ley de acción-reacción: toda fuerza (fuerza de acción,Fa) aplicada a un cuerpo siempre tendrá una reacción (fuerza de reacción, Fr) de igual magnitud y sentido contrario a dicha fuerza.

Fa = - Fr

Fuerzas de Contacto

Se entiende por fuerzas de contacto las fuerzas que se presentan al interactuar 2 o más cuerpos entre sí.

Los 4 tipos de fuerzas de contacto son:

1- Normal

2- Fricción

3- Tensión

4- Resortes

...

Descargar como  txt (23.6 Kb)   pdf (73.6 Kb)   docx (583.6 Kb)  
Leer 26 páginas más »
Disponible sólo en Essays.club